Genetic programming is used to evolve mineral identification functions for hyperspectral images. The input image set comprises 168 images from different wavelengths ranging from 428 nm (visible blue) to 2507 nm (invisible shortwave in the infrared), taken over Cuprite, Nevada, with the AVIRIS hyperspectral sensor. A composite mineral image indicating the overall reflectance percentage of three minerals (alunite, kaolnite, buddingtonite) is used as a reference or "solution" image. The training set is manually selected from this composite image. The task of the GP system is to evolve mineral identifiers, where each identifier is trained to identify one of the three mineral specimens. A number of different GP experiments were undertaken, which parameterized features such as thresholded mineral reflectance intensity and target GP language. The results are promising, especially for minerals with higher reflectance thresholds (more intense concentrations).
International audienceHyperspectral imaging offers the possibility of characterizing materials and objects in the air, land and water on the basis of the unique reflectance patterns that result from the interaction of solar energy with the molecular structure of the material. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral data processing. Our main focus is on the development of approaches able to naturally integrate the spatial and spectral information available from the data. Special attention is paid to techniques that circumvent the curse of dimensionality introduced by high-dimensional data spaces. Experimental results, focused in this work on a specific case-study of urban data analysis, demonstrate the success of the considered techniques. This paper represents a first step towards the development of a quantitative and comparative assessment of advances in hyperspectral data processing techniques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.