In eukaryotes, dozens of posttranscriptional modifications are directed to specific nucleotides in ribosomal RNAs (rRNAs) by small nucleolar RNAs (snoRNAs). We identified homologs of snoRNA genes in both branches of the Archaea. Eighteen small sno-like RNAs (sRNAs) were cloned from the archaeon Sulfolobus acidocaldarius by coimmunoprecipitation with archaeal fibrillarin and NOP56, the homologs of eukaryotic snoRNA-associated proteins. We trained a probabilistic model on these sRNAs to search for more sRNAs in archaeal genomic sequences. Over 200 additional sRNAs were identified in seven archaeal genomes representing both the Crenarchaeota and the Euryarchaeota. snoRNA-based rRNA processing was therefore probably present in the last common ancestor of Archaea and Eukarya, predating the evolution of a morphologically distinct nucleolus.
The minor spliceosome is a ribonucleoprotein complex that catalyses the removal of an atypical class of spliceosomal introns (U12-type) from eukaryotic messenger RNAs. It was first identified and characterized in animals, where it was found to contain several unique RNA constituents that share structural similarity with and seem to be functionally analogous to the small nuclear RNAs (snRNAs) contained in the major spliceosome. Subsequently, minor spliceosomal components and U12-type introns have been found in plants but not in fungi. Unlike that of the major spliceosome, which arose early in the eukaryotic lineage, the evolutionary history of the minor spliceosome is unclear because there is evidence of it in so few organisms. Here we report the identification of homologues of minor-spliceosome-specific proteins and snRNAs, and U12-type introns, in distantly related eukaryotic microbes (protists) and in a fungus (Rhizopus oryzae). Cumulatively, our results indicate that the minor spliceosome had an early origin: several of its characteristic constituents are present in representative organisms from all eukaryotic supergroups for which there is any substantial genome sequence information. In addition, our results reveal marked evolutionary conservation of functionally important sequence elements contained within U12-type introns and snRNAs.
Background: Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad). This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT.
Spliceosomal introns are hallmarks of eukaryotic genomes, dividing coding regions into separate exons, which are joined during mRNA intron removal catalyzed by the spliceosome. With few known exceptions, spliceosomal introns are cis-spliced, that is, removed from one contiguous pre-mRNA transcript. The protistan intestinal parasite Giardia lamblia exhibits one of the most reduced eukaryotic genomes known, with short intergenic regions and only four known spliceosomal introns. Our genome-wide search for additional introns revealed four unusual cases of spliceosomal intron fragmentation, with consecutive exons of conserved protein-coding genes being dispersed to distant genomic sites. Independent transcripts are trans-spliced to yield contiguous mature mRNAs. Most strikingly, a dynein heavy chain subunit is both interrupted by two fragmented introns and also predicted to be assembled as two separately translated polypeptides, a remarkably complex expression pathway for a nuclear-encoded sequence. For each case, we observe extensive base-pairing potential between intron halves. This base pairing provides both a rationale for the in vivo association of independently transcribed mRNAs transcripts and the apparent specificity of splicing. Similar base-pairing potential in two cis-spliced G. lamblia introns suggests an evolutionary pathway whereby intron fragmentation of cis-spliced introns is permissible and a preliminary evolutionary step to complete gene fission. These results reveal remarkably complex genome dynamics in a severely genomically reduced parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.