SummaryBackgroundPersistent inflammation has been proposed to contribute to various stages in the pathogenesis of cardiovascular disease. Interleukin-6 receptor (IL6R) signalling propagates downstream inflammation cascades. To assess whether this pathway is causally relevant to coronary heart disease, we studied a functional genetic variant known to affect IL6R signalling.MethodsIn a collaborative meta-analysis, we studied Asp358Ala (rs2228145) in IL6R in relation to a panel of conventional risk factors and inflammation biomarkers in 125 222 participants. We also compared the frequency of Asp358Ala in 51 441 patients with coronary heart disease and in 136 226 controls. To gain insight into possible mechanisms, we assessed Asp358Ala in relation to localised gene expression and to postlipopolysaccharide stimulation of interleukin 6.FindingsThe minor allele frequency of Asp358Ala was 39%. Asp358Ala was not associated with lipid concentrations, blood pressure, adiposity, dysglycaemia, or smoking (p value for association per minor allele ≥0·04 for each). By contrast, for every copy of 358Ala inherited, mean concentration of IL6R increased by 34·3% (95% CI 30·4–38·2) and of interleukin 6 by 14·6% (10·7–18·4), and mean concentration of C-reactive protein was reduced by 7·5% (5·9–9·1) and of fibrinogen by 1·0% (0·7–1·3). For every copy of 358Ala inherited, risk of coronary heart disease was reduced by 3·4% (1·8–5·0). Asp358Ala was not related to IL6R mRNA levels or interleukin-6 production in monocytes.InterpretationLarge-scale human genetic and biomarker data are consistent with a causal association between IL6R-related pathways and coronary heart disease.FundingBritish Heart Foundation; UK Medical Research Council; UK National Institute of Health Research, Cambridge Biomedical Research Centre; BUPA Foundation.
Involving patients in research broadens a researcher’s field of influence and may generate novel ideas. Preclinical research is integral to the progression of innovative healthcare. These are not patient-facing disciplines and implementing meaningful public and patient involvement (PPI) can be a challenge. A discussion forum and thematic analysis identified key challenges of implementing public and patient involvement for preclinical researchers. In response we developed a “PPI Ready” planning canvas. For contemporaneous evaluation of public and patient involvement, a psychometric questionnaire and an open source tool for its evaluation were developed. The questionnaire measures information, procedural and quality assessment. Combined with the open source evaluation tool, researchers are notified if public and patient involvement is unsatisfactory in any of these areas. The tool is easy to use and adapts a psychometric test into a format familiar to preclinical scientists. Designed to be used iteratively across a research project, it provides a simple reporting grade to document satisfaction trend over the research lifecycle.
Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1×10−9). The improvement varied across diseases with a 16% median increase in χ2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.