Huygens' principle is a well-known concept in electromagnetics that dates back to 1690. Here, it is applied to develop designer surfaces that provide extreme control of electromagnetic wave fronts across electrically thin layers. These reflectionless surfaces, referred to as metamaterial Huygens' surfaces, provide new beam shaping, steering, and focusing capabilities. The metamaterial Huygens' surfaces are realized with two-dimensional arrays of polarizable particles that provide both electric and magnetic polarization currents to generate prescribed wave fronts. A straightforward design methodology is demonstrated and applied to develop a beam-refracting surface and a Gaussian-to-Bessel beam transformer. Metamaterial Huygens' surfaces could find a wide range of applications over the entire electromagnetic spectrum including single-surface lenses, polarization controlling devices, stealth technologies, and perfect absorbers.
We report experimental results at 1.057 GHz that demonstrate the ability of a planar left-handed lens, with a relative refractive index of -1, to form images that overcome the diffraction limit. The left-handed lens is a planar slab consisting of a grid of printed metallic strips over a ground plane, loaded with series capacitors (C) and shunt inductors (L). The measured half-power beamwidth of the point-source image formed by the left-handed lens is 0.21 effective wavelengths, which is significantly narrower than that of the diffraction-limited image corresponding to 0.36 wavelengths.
Metamaterial Huygens' surfaces manipulate electromagnetic wavefronts without reflection. A broadband Huygens' surface that efficiently refracts normally incident light at the telecommunication wavelength of 1.5 μm is reported. The electric and magnetic responses of the surface are independently controlled by cascading three patterned, metallic sheets with a subwavelength overall thickness of 430 nm. The peak efficiency of the device is significantly enhanced by reducing the polarization and reflection losses that are inherent to earlier single-layer designs.
A composite medium consisting of an array of fine wires and split-ring resonators has been previously used to experimentally verify a negative index of refraction. We present a negative refractive index ͑NRI͒ metamaterial that goes beyond the original split-ring resonator/wire medium and is capable of supporting a backward cone of radiation. We report experimental results at microwave frequencies that demonstrate backward-wave radiation from a NRI metamaterial-a characteristic analogous to reversed Cherenkov radiation. The conception of this metamaterial is based on a fresh perspective regarding the operation of NRI metamaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.