PennyLane is a Python 3 software framework for optimization and machine learning of quantum and hybrid quantumclassical computations. The library provides a unified architecture for near-term quantum computing devices, supporting both qubit and continuous-variable paradigms. PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation. PennyLane thus extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations. A plugin system makes the framework compatible with any gate-based quantum simulator or hardware.We provide plugins for Strawberry Fields, Rigetti Forest, Qiskit, and ProjectQ, allowing PennyLane optimizations to be run on publicly accessible quantum devices provided by Rigetti and IBM Q. On the classical front, PennyLane interfaces with accelerated machine learning libraries such as TensorFlow, PyTorch, and autograd. PennyLane can be used for the optimization of variational quantum eigensolvers, quantum approximate optimization, quantum machine learning models, and many other applications.
We propose a new method to extend the size of a quantum computation beyond the number of physical qubits available on a single device. This is accomplished by randomly inserting measure-and-prepare channels to express the output state of a large circuit as a separable state across distinct devices. Our method employs randomized measurements, resulting in a sample overhead that is O~(4k/ε2), where ε is the accuracy of the computation and k the number of parallel wires that are "cut" to obtain smaller sub-circuits. We also show an information-theoretic lower bound of Ω(2k/ε2) for any comparable procedure. We use our techniques to show that circuits in the Quantum Approximate Optimization Algorithm (QAOA) with p entangling layers can be simulated by circuits on a fraction of the original number of qubits with an overhead that is roughly 2O(pκ), where κ is the size of a known balanced vertex separator of the graph which encodes the optimization problem. We obtain numerical evidence of practical speedups using our method applied to the QAOA, compared to prior work. Finally, we investigate the practical feasibility of applying the circuit cutting procedure to large-scale QAOA problems on clustered graphs by using a 30-qubit simulator to evaluate the variational energy of a 129-qubit problem as well as carry out a 62-qubit optimization.
We present a framework for differentiable quantum transforms. Such transforms are metaprograms capable of manipulating quantum programs in a way that preserves their differentiability. We highlight their potential with a set of relevant examples across quantum computing (gradient computation, circuit compilation, and error mitigation), and implement them using the transform framework of PennyLane, a software library for differentiable quantum programming. In this framework, the transforms themselves are differentiable and can be parametrized and optimized, which opens up the possibility of improved quantum resource requirements across a spectrum of tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.