Previous studies have shown that ethanol feeding to rats alters methionine metabolism by decreasing the activity of methionine synthetase. This is the enzyme that converts homocysteine in the presence of vitamin B12 and N5-methyltetrahydrofolate to methionine. The action of the ethanol results in an increase in the hepatic level of the substrate N5-methyltetrahydrofolate but as an adaptive mechanism, betaine homocysteine methyltransferase, is induced in order to maintain hepatic S-adenosylmethionine at normal levels. Continued ethanol feeding, beyond 2 months, however, produces depressed levels of hepatic S-adenosylmethionine. Because betaine homocysteine methyltransferase is induced in the livers of ethanol-fed rats, this study was conducted to determine what effect the feeding of betaine, a substrate of betaine homocysteine methyltransferase, has on methionine metabolism in control and ethanol-fed animals. Control and ethanol-fed rats were given both betaine-lacking and betaine-containing liquid diets for 4 weeks, and parameters of methionine metabolism were measured. These measurements demonstrated that betaine administration doubled the hepatic levels of S-adenosylmethionine in control animals and increased by 4-fold the levels of hepatic S-adenosylmethionine in the ethanol-fed rats. The ethanol-induced infiltration of triglycerides in the liver was also reduced by the feeding of betaine to the ethanol-fed animals. These results indicate that betaine administration has the capacity to elevate hepatic S-adenosylmethionine and to prevent the ethanol-induced fatty liver.
Previous studies showed that chronic ethanol administration inhibits methionine synthase activity, resulting in impaired homocysteine remethylation to form methionine. This defect in homocysteine remethylation was shown to increase plasma homocysteine and to interfere with the production of hepatic S-adenosylmethionine (SAM) in ethanol-fed rats. These changes were shown to be reversed by the administration of betaine, an alternative methylating agent. This study was undertaken to determine additional effects of ethanol on methionine metabolism and their functional consequences. The influences of methionine loading and betaine supplementation were also evaluated. Adult Wistar rats were fed ethanol or a control Lieber-DeCarli liquid diet for 4 wk, and metabolites of the methionine cycle were measured in vitro in isolated hepatocytes under basal and methionine-supplemented conditions. S-Adenosylhomocysteine (SAH) concentrations were elevated in hepatocytes isolated from ethanol-fed rats compared with controls and in hepatocytes from both groups when supplemented with methionine. The addition of betaine to the methionine-supplemented incubation media reduced the elevated SAH levels. The decrease in the intracellular SAH:SAM ratio due to ethanol consumption inhibited the activity of the liver-specific SAM-dependent methyltransferase, phosphatidylethanolamine methyltransferase. Our data indicate that betaine, by remethylating homocysteine and removing SAH, overcomes the detrimental effects of ethanol consumption on methionine metabolism and may be effective in correcting methylation defects and treating liver diseases.
Previous studies from our laboratory have shown that ethanol consumption results in an increase in hepatocellular S-adenosylhomocysteine levels. Because S-adenosylhomocysteine is a potent inhibitor of methylation reactions, we propose that increased intracellular S-adenosylhomocysteine levels could be a major contributor to ethanol-induced pathologies. To test this hypothesis, hepatocytes isolated from rat livers were grown on collagen-coated plates in Williams' medium E containing 5% FCS and exposed to varying concentrations of adenosine in order to increase intracellular S-adenosylhomocysteine levels. We observed increases in caspase-3 activity following exposure to adenosine. This increase in caspase activity correlated with increases in intracellular S-adenosylhomocysteine levels and DNA hypoploidy. The adenosine-induced changes could be significantly attenuated by betaine administration. The mechanism of betaine action appeared to be via the methylation reaction catalyzed by betaine-homocysteine-methyltransferase. To conclude, our results indicate that the elevation of S-adenosylhomocysteine levels in the liver by ethanol is a major factor in altering methylation reactions and in increasing apoptosis in the liver. We conclude that ethanol-induced alteration in methionine metabolic pathways may play a crucial role in the pathologies associated with alcoholic liver injury and that betaine administration may have beneficial therapeutic effects. Published by Elsevier Inc.
Previous studies showed that chronic ethanol administration alters methionine metabolism in the liver, resulting in increased intracellular S-adenosylhomocysteine (SAH) levels and increased homocysteine release into the plasma. We showed further that these changes appear to be reversed by betaine administration. This study compared the effects of betaine and S-adenosylmethionine (SAM), another methylating agent, on ethanol-induced changes of methionine metabolism and hepatic steatosis. Wistar rats were fed ethanol or control Lieber-Decarli liquid diet for 4 wk and metabolites of the methionine cycle were measured in isolated hepatocytes. Hepatocytes from ethanol-fed rats had a 50% lower intracellular SAM:SAH ratio and almost 2-fold greater homocysteine release into the media compared with controls. Supplementation of betaine or SAM in the incubation media increased this ratio in hepatocytes from both control and ethanol-fed rats and attenuated the ethanol-induced increased hepatocellular triglyceride levels by approximately 20%. On the other hand, only betaine prevented the increase in generation of homocysteine in the incubation media under basal and methionine-loaded conditions. SAM can correct only the ratio and the methylation defects and may in fact be detrimental after prolonged use because of its propensity to increase homocysteine release. Both SAM and betaine are effective in increasing the SAM:SAH ratio in hepatocytes and in attenuating hepatic steatosis; however, only betaine can effectively methylate homocysteine and prevent increased homocysteine release by the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.