Tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) is an inflammation-associated secreted protein that has been implicated as having important and diverse tissue protective and anti-inflammatory properties, e.g. mediating many of the immunomodulatory and beneficial activities of mesenchymal stem/stromal cells. TSG-6 is constitutively expressed in some tissues, which are either highly metabolically active or subject to challenges from the environment, perhaps providing protection in these contexts. The diversity of its functions are dependent on the binding of TSG-6 to numerous ligands, including matrix molecules such as glycosaminoglycans, as well as immune regulators and growth factors that themselves interact with these linear polysaccharides. It is becoming apparent that TSG-6 can directly affect matrix structure and modulate the way extracellular signalling molecules interact with matrix. In this review, we focus mainly on the literature for TSG-6 over the last 10 years, summarizing its expression, structure, ligand-binding properties, biological functions and highlighting TSG-6's potential as a therapeutic for a broad range of disease indications.
The complete amino acid sequence of the human complement system regulatory protein, factor H, has been derived from sequencing three overlapping cDNA clones. The sequence consists of 1213 amino acids arranged in 20 homologous units, each about 60 amino acids long, and an 18-residue leader sequence. The 60-amino-acid-long repetitive units are homologous with those found in a large number of other complement and non-complement proteins. Two basic C-terminal residues, deduced from the cDNA sequence, are absent from factor H isolated from outdated plasma. A tyrosine/histidine polymorphism was observed within the seventh homologous repeat unit of factor H. This is likely to represent a difference between the two major allelic variants of factor H. The nature of the cDNA clones indicates that there is likely to be an alternative splicing mechanism, resulting in the formation of at least two species of factor H mRNA.
TSG-6 is a multifunctional protein that is up-regulated in many pathological and physiological contexts, where it plays important roles in inflammation and tissue remodelling. For example, it is a potent inhibitor of neutrophil migration and can modulate the protease network through inhibition of plasmin. TSG-6 binds a wide range of GAGs (glycosaminoglycans) [i.e. HA (hyaluronan), chondroitin 4-sulphate, dermatan sulphate, heparin and heparan sulphate] as well as a variety of protein ligands, where these interactions can influence the activities of TSG-6. For example, through its association with HA, TSG-6 can mediate HA cross-linking via several different mechanisms, some of which promote leucocyte adhesion. Binding to heparin, however, enhances the ability of TSG-6 to potentiate the anti-plasmin activity of inter-alpha-inhibitor, which binds non-covalently to TSG-6 via its bikunin chain. Furthermore, although HA and heparin interact with distinct sites on the Link module, the binding of heparin can inhibit subsequent interaction with HA. In addition, the interactions of TSG-6 with HA, heparin and at least some of its protein ligands are sensitive to pH. Therefore it seems that in different tissue micro-environments (characterized, for example, by pH and GAG content), TSG-6 could be partitioned into functional pools with distinct activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.