An experimental study of boundary-layer turbulence in a free surface channel flow is described. Attention is concentrated on the effects of different surface roughness conditions on the turbulence structure in the boundary region. Hydrogen bubble flow tracers and medium high-speed motion photography were used to obtain an instantaneous visual and quantitative description of the flow field. In particular it proved possible to record instantaneous longitudinal and vertical velocity profiles from which distributions of the instantaneous Reynolds stress contribution were computed.Two well-defined intermittent features of the flow structure were visually identified close to the boundary. These consisted of fluid ejection phases, previously reported by Kline et al. (1967) for smooth boundary flow, and fluid inrush phases. Conditional averaging of the instantaneous velocity data yielded quantitative confirmation that ejection phases corresponded with ejection of low momentum fluid outwards from the boundary whilst inrush phases were associated with the transport of high momentum fluid inwards towards the boundary. Inrush and ejection events were present irrespective of the surface roughness condition.Conditional averaging also indicated that both inrush and ejection sequences correlate with an extremely high contribution to Reynolds stress and hence turbulence production close to the boundary. Indeed the present results, taken with those from previous studies, suggest that turbulence production is dominated by the joint contribution from the inrush and ejection events. It is emphasized that these structural features are intermittent, forming important linked elements of a randomly repeating cycle of wall-region turbulence production which is apparently driven by some violent three-dimensional instability mechanism.Whilst the most coherent effects of the observed inrush phases appear to be mainly confined to a region close to the boundary, the influence of the ejection phases is far more extensive. The ejected low momentum fluid elements, drawn from the viscous sublayer and from between the interstices of the roughness elements, travel outwards from the boundary into the body of the flow and give rise to very large positive contributions to Reynolds stress at points remote from the boundary. This effect is sufficiently strong to prompt the suggestion that the ejection process could represent a universal and dominant mode of momentum transport outside the immediate wall region and possibly extending across the entire thickness of the boundary layer.A structural model based on the present observations is seen to exhibit consistency with many commonly visualized features and recorded average properties of turbulent boundary-layer flows in general.
The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.
The bursting phenomenon is a common feature of turbulent boundary layers irrespective of the wall roughness condition. Consistent with Theodorsen's conjecture, recent direct numerical simulation studies have shown that the dynamics of this bursting process over smooth walls is directly linked to the presence of powerful vortical structures with a general horseshoe-type configuration. The present paper describes the results of physical experiments that demonstrate that these vortex structures are also present in turbulent boundary layers over rough walls. They appear to form the central element in a recurring, highly nonlinear cycle of turbulence and burst generating instability. Novel velocity measurement techniques were used in the investigation that, for the first time in physical experimental fluid mechanics research, allowed quasi-instantaneous vortex lines to be traced through a three-dimensional block of flow space to reveal the vortical structures embedded in the shear flowfield. Preliminary test results are also presented that indicate that, as in the smooth wall case, the instability structures over rough boundaries have a preferred spanwise wavelength that scales with the roughness dimension.
Intrasac pressure waveforms following EVAR are easily defined following a type I endoleak. Waveforms obtained following type II endoleak simulation resemble the baseline waveform in an attenuated form. Intrasac pressures are, therefore, a reliable marker for type I, but not a type II endoleak. In the case of a combined endoleak, the type I endoleak waveform effectively masks that of the type II. Intrasac thrombus faithfully transmits intrasac pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.