The aim of the National Geoscience Mapping Accord Cooper-Eromanga Basins Project was to develop a quantitative petroleum generation model for the Cooper and Eromanga Basins by delineating basin fill, thermal history and generation potential of key stratigraphic intervals. Bio- and lithostratigraphic frameworks were developed that were uniform across state boundaries. Similarly cross-border seismic horizon maps were prepared for the C horizon (top Cadna-owie Formation), P horizon (top Patchawarra Formation) and Z horizon (base Eromanga/Cooper Basins). Derivative maps, such as isopach maps, were prepared from the seismic horizon maps.Burial geohistory plots were constructed using standard decompaction techniques, a fluctuating sea level and palaeo-waterdepths. Using terrestrial compaction and a palaeo-elevation for the Winton Formation, tectonic subsidence during the Winton Formation deposition and erosion is the same as the background Eromanga Basin trend—this differs significantly from previous studies which attributed apparently rapid deposition of the Winton Formation to basement subsidence. A dynamic topography model explains many of the features of basin history during the Cretaceous. Palaeo-temperature modelling showed a high heatflow peak from 90–85 Ma. The origin of this peak is unknown. There is also a peak over the last two–five million years.Expulsion maps were prepared for the source rock units studied. In preparing these maps the following assumptions were made:expulsion is proportional to maturity and source rock richness;maturity is proportional to peak temperature; andpeak temperature is proportional to palaeo-heatflow and palaeo-burial.The geohistory modelling involved 111 control points. The major expulsion is in the mid-Cretaceous with minor amounts in the late Tertiary. Maturity maps were prepared by draping seismic structure over maturity values at control points. Draping of maturity maps over expulsion values at the control points was used to produce expulsion maps. Hydrocarbon generation was calculated using a composite kerogen kinetic model. Volumes generated are theoretically large, up to 120 BBL m2 of kitchen area at Tirrawarra North. Maps were prepared for the Patchawarra and Toolachee Formations in the Cooper Basin and the Birkhead and Poolowanna Formations in the Eromanga Basins. In addition, maps were prepared for Tertiary expulsion. The Permian units represent the dominant source as Jurassic source rocks have only generated in the deepest parts of the Eromanga Basin.
The Pennsylvanian-Middle Triassic Cooper Basin is Australia's premier conventional onshore hydrocarbon-producing province. The basin also hosts a range of unconventional gas play types, including basin-centered gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee Formations, and the Murteree and Roseneath shale gas plays.This study used petroleum systems analysis to investigate the maturity and generation potential of 10 Permian source rocks in the Cooper Basin. A deterministic petroleum systems model was used to quantify the volume of expelled and retained hydrocarbons, estimated at 1272 billion BOE (512 billion bbl and 760 billion BOE) and 977 billion BOE (362 billion bbl and 615 billion BOE), respectively. Monte Carlo simulations were used to quantify the uncertainty in volumes generated and to demonstrate the sensitivity of these results to variations in source-rock characteristics.The large total generation potential of the Cooper Basin and the broad distribution of the Permian source kitchen highlight the basin's significance as a world-class hydrocarbon province. The large disparity between the calculated volume of hydrocarbons generated and the volume so far found in reservoirs indicates the potential for large volumes to remain within the basin, despite significant losses from leakage and water washing. The hydrocarbons expelled have provided abundant charge to both conventional accumulations and to the tight and basin-centered gas plays, and the broad spatial distribution of hydrocarbons remaining within the source rocks, especially those within the Toolachee and Patchawarra Formations, suggests the potential for widespread shale and deep dry coal plays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.