Herein we report a novel strategy for the design and construction of natural and natural productlike libraries based on the principle of priVileged structures, a term originally introduced to describe structural motifs capable of interacting with a variety of unrelated molecular targets. The identification of such privileged structures in natural products is discussed, and subsequently the 2,2-dimethylbenzopyran moiety is selected as an inaugural template for the construction of natural product-like libraries via this strategy. Initially, a novel solid-phase synthesis of the benzopyran motif is developed employing a unique cycloloading strategy that relies on the use of a new, polystyrene-based selenenyl bromide resin. Once the loading, elaboration, and cleavage of these benzopyrans was established, this new solid-phase method was then thoroughly validated through the construction of six focused combinatorial libraries designed around natural and designed molecules of recent biological interest.
The farnesoid X receptor (FXR) functions as a bile acid (BA) sensor coordinating cholesterol metabolism, lipid homeostasis, and absorption of dietary fats and vitamins. However, BAs are poor reagents for characterizing FXR functions due to multiple receptor independent properties. Accordingly, using combinatorial chemistry we evolved a small molecule agonist termed fexaramine with 100-fold increased affinity relative to natural compounds. Gene-profiling experiments conducted in hepatocytes with FXR-specific fexaramine versus the primary BA chenodeoxycholic acid (CDCA) produced remarkably distinct genomic targets. Highly diffracting cocrystals (1.78 A) of fexaramine bound to the ligand binding domain of FXR revealed the agonist sequestered in a 726 A(3) hydrophobic cavity and suggest a mechanistic basis for the initial step in the BA signaling pathway. The discovery of fexaramine will allow us to unravel the FXR genetic network from the BA network and selectively manipulate components of the cholesterol pathway that may be useful in treating cholesterol-related human diseases.
Despite increased understanding of the biological basis for sleep control in the brain, few novel mechanisms for the treatment of insomnia have been identified in recent years. One notable exception is inhibition of the excitatory neuropeptides orexins A and B by design of orexin receptor antagonists. Herein, we describe how efforts to understand the origin of poor oral pharmacokinetics in a leading HTS-derived diazepane orexin receptor antagonist led to the identification of compound 10 with a 7-methyl substitution on the diazepane core. Though 10 displayed good potency, improved pharmacokinetics, and excellent in vivo efficacy, it formed reactive metabolites in microsomal incubations. A mechanistic hypothesis coupled with an in vitro assay to assess bioactivation led to replacement of the fluoroquinazoline ring of 10 with a chlorobenzoxazole to provide 3 (MK-4305), a potent dual orexin receptor antagonist that is currently being tested in phase III clinical trials for the treatment of primary insomnia.
Having developed a reliable and versatile solid-phase strategy for the split-and-pool synthesis of naturally occurring and designed derivatives of the benzopyran template (see preceding paper), we now report the construction of a 10 000-membered natural product-like compound library for chemical biology studies. Concomitantly, we report an early application of the IRORI NanoKan optical encoding system for the high throughput nonchemical tagging and sorting of library members during split-and-pool synthesis. The overall synthetic strategy for library construction is discussed and the individual reaction pathways are examined in the context of specific library members, illustrating reaction conditions as well as yields and purities. The issues of building block selection and quality control of library members are also addressed and, finally, potential applications of the library to chemical biology are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.