Purpose of Review Osteoarthritis (OA) is a subset of joint disorders resulting in degeneration of synovial joints. This leads to pain, disability and loss of independence. Knee and hip OA are extremely prevalent, and their occurrence increases with ageing. Similarly, loss of muscle mass and function, sarcopenia, occurs during ageing. Recent Findings Little is known about the impact of muscle wasting on OA progression; nevertheless, it has been suggested that muscle wasting directly affects the stability of the joints and loss of mobility leads to gradual degeneration of articular cartilage. The molecular mechanisms underlying muscle wasting in OA are not well understood; however, these are probably related to changes in gene expression, as well as epigenetic modifications. Summary It is becoming clear that skeletal muscle wasting plays an important role in OA development and/or progression. Here, we discuss mechanisms, current interventions, such as exercise, and potentially novel approaches, such as modulation of microRNAs, aiming at ameliorating OA symptoms through maintaining muscle mass and function.
Progressive skeletal muscle wasting is a natural consequence of aging and is common in chronic and acute diseases. Loss of skeletal muscle mass and function (strength) often leads to frailty, decreased independence, and increased risk of hospitalization. Despite progress made in our understanding of the mechanisms underlying muscle wasting, there is still no treatment available, with exercise training and dietary supplementation improving, but not restoring, muscle mass and/or function. There has been slow progress in developing novel therapies for muscle wasting, either during aging or disease, partially due to the complex nature of processes underlying muscle loss. The mechanisms of muscle wasting are multifactorial, with a combination of factors underlying age- and disease-related functional muscle decline. These factors include well-characterized changes in muscle such as changes in protein turnover and more recently described mechanisms such as autophagy or satellite cell senescence. Advances in transcriptomics and other high-throughput approaches have highlighted significant deregulation of skeletal muscle gene and protein levels during aging and disease. These changes are regulated at different levels, including posttranscriptional gene expression regulation by microRNAs. microRNAs, potent regulators of gene expression, modulate many processes in muscle, and microRNA-based interventions have been recently suggested as a promising new therapeutic strategy against alterations in muscle homeostasis. Here, we review recent developments in understanding the aging-associated mechanisms of muscle wasting and explore potential microRNA-based therapeutic avenues.
Purpose of review Muscle wasting in cancer cachexia remains an unmet clinical need due to lack of effective therapies associated with the complexity of the disease. Here, we discuss microRNAs, robust regulators of the expression of multiple genes, only recently characterized in cancer cachexia in humans and their therapeutic potential for muscle wasting. Recent findings Changes in microRNAs in muscle of cancer patients have been demonstrated for the first time and these are associated with dysregulated signalling networks during muscle wasting. These data, together with studies in animal models, indicate that microRNAs are attractive therapeutic candidates for maintaining muscle mass, both during and following cancer treatment ultimately improving patient outcomes. Summary Cancer cachexia is a complex metabolic condition associated with muscle wasting. Maintenance of muscle mass in cancer patients can improve their response to therapy and prognosis. microRNAs, which can act as oncogenes or tumour suppressors, are also dysregulated in muscle of cachexia patients. Studies in animal models of muscle wasting have demonstrated that microRNAs regulate muscle mass and strength. With more microRNA-based therapeutics in clinical trials and first RNA drugs approved, microRNAs present an attractive novel therapeutic avenue for maintaining muscle homeostasis in cachexia patients to improve their prognosis.
Sarcopenia is characterised by an age-related decrease in the number of muscle fibres and additional weakening of the remaining fibres, resulting in a reduction in muscle mass and function. Many studies associate poor maternal nutrition during gestation and/or lactation with altered skeletal muscle homeostasis in the offspring and the development of sarcopenia. The aim of this study was to determine whether the musculoskeletal physiology in offspring born to mouse dams fed a low-protein diet during pregnancy was altered and whether any physiological changes could be modulated by the nutritional protein content in early postnatal stages. Thy1-YFP female mice were fed ad libitum on either a normal (20%) or a low-protein (5%) diet. Newborn pups were cross-fostered to different lactating dams (maintained on a 20% or 5% diet) to generate three groups analysed at weaning (21 days): Normal-to-Normal (NN), Normal-to-Low (NL) and Low-to-Normal (LN). Further offspring were maintained ad libitum on the same diet as during lactation until 12 weeks of age, creating another three groups (NNN, NLL, LNN). Mice on a low protein diet postnatally (NL, NLL) exhibited a significant reduction in body and muscle weight persisting up to 12 weeks, unlike mice on a low protein diet only prenatally (LN, LNN). Muscle fibre size was reduced in mice from the NL but not LN group, showing recovery at 12 weeks of age. Muscle force was reduced in NLL mice, concomitant with changes in the NMJ site and changes in atrophy-related and myosin genes. In addition, μCT scans of mouse tibiae at 12 weeks of age revealed changes in bone mass and morphology, resulting in a higher bone mass in the NLL group than the control NNN group. Finally, changes in the expression of miR-133 in the muscle of NLL mice suggest a regulatory role for this microRNA in muscle development in response to postnatal diet changes. Overall, this data shows that a low maternal protein diet and early postnatal life low-protein intake in mice can impact skeletal muscle physiology and function in early life while postnatal low protein diet favours bone integrity in adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.