We propose a multivariate extreme value threshold model for joint tail estimation which overcomes the problems encountered with existing techniques when the variables are near independence. We examine inference under the model and develop tests for independence of extremes of the marginal variables, both when the thresholds are fixed, and when they increase with the sample size. Motivated by results obtained from this model, we give a new and widely applicable characterisation of dependence in the joint tail which includes existing models as special cases. A new parameter which governs the form of dependence is of fundamental importance to this characterisation. By estimating this parameter, we develop a diagnostic test which assesses the applicability of bivariate extreme value joint tail models. The methods are demonstrated through simulation and by analysing two previously published data sets.
Standard approaches for modelling dependence within joint tail regions are based on extreme value methods which assume max-stability, a particular form of joint tail dependence. We develop joint tail models based on a broader class of dependence structure which provides a natural link between max-stable models and weaker forms of dependence including independence and negative association. This approach overcomes many of the problems that are encountered with standard methods and is the basis for a Poisson process representation that generalizes existing bivariate results. We apply the new techniques to simulated and environmental data, and demonstrate the marked advantage that the new approach offers for joint tail extrapolation.
The analysis of extreme values within a stationary time series entails various assumptions concerning its long- and short-range dependence. We present a range of new diagnostic tools for assessing whether these assumptions are appropriate and for identifying structure within extreme events. These tools are based on tail characteristics of joint survivor functions but can be implemented by using existing estimation methods for extremes of univariate independent and identically distributed variables. Our diagnostic aids are illustrated through theoretical examples, simulation studies and by application to rainfall and exchange rate data. On the basis of these diagnostics we can explain characteristics that are found in the observed extreme events of these series and also gain insight into the properties of events that are more extreme than those observed. Copyright 2003 Royal Statistical Society.
A fundamental issue in applied multivariate extreme value analysis is modelling dependence within joint tail regions. The primary focus of this work is to extend the classical pseudopolar treatment of multivariate extremes to develop an asymptotically motivated representation of extremal dependence that also encompasses asymptotic independence. Starting with the usual mild bivariate regular variation assumptions that underpin the coefficient of tail dependence as a measure of extremal dependence, our main result is a characterization of the limiting structure of the joint survivor function in terms of an essentially arbitrary non-negative measure that must satisfy some mild constraints. We then construct parametric models from this new class and study in detail one example that accommodates asymptotic dependence, asymptotic independence and asymmetry within a straightforward parsimonious parameterization. We provide a fast simulation algorithm for this example and detail likelihood-based inference including tests for asymptotic dependence and symmetry which are useful for submodel selection. We illustrate this model by application to both simulated and real data. In contrast with the classical multivariate extreme value approach, which concentrates on the limiting distribution of normalized componentwise maxima, our framework focuses directly on the structure of the limiting joint survivor function and provides significant extensions of both the theoretical and the practical tools that are available for joint tail modelling. Copyright (c) 2009 Royal Statistical Society.
We focus on modelling the 92 soccer teams in the English Football Association League over the years 1992-1997 using refinements of the independent Poisson model of Dixon and Coles. Our framework assumes that each team has attack and defence strengths that evolve through time (rather than remaining constant) according to some unobserved bivariate stochastic process. Estimation of the teams' attack and defence capabilities is undertaken via a novel approach involving an approximation that is computationally convenient and fast. The results of this approximation compare very favourably with results obtained through the Dixon and Coles approach. We note that the full model (i.e. the model before the above approximation is made) may be implemented using Markov chain Monte Carlo procedures, and that this approach is vastly more computationally expensive. We focus on the probabilities of home win, draw or away win because these outcomes constitute the primary betting market. These probabilities are estimated for games played between any two of the 92 teams and the predictions are compared with the actual results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.