Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support ('consensus view') for a claim increased and between-researcher variability in support ('expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.
Syntheses, crystal structures, ab initio density functional theory computations, and photophysical properties of 1,6-di-, 1,2,5,6-tetra-, and 1,3,5,7,9-pentaethynyl-substituted corannulenes (classes 3, 4, and 5, respectively) are reported. Classes 3 and 4 were prepared from the corresponding corannulenyl bromides and terminal alkynes in excellent yields (nine examples, with yields of 57-92%) using the Sonogarshira reaction. Class 5 was prepared from 1,3,5,7,9-pentacholorocorannulene and trimethylalkynylstannanes using a modification of Nolan's procedure (8 examples, with yields of 45-93%). The molecular packing in crystals of 1,6-diphenylethynyl-2,5-dimethylcorannulene (3-Ph2) displays a polar columnar structure with all of the molecule bowls oriented in the same direction. Similarly, 1,2,5,6-tetrakis(3,5-dimethylphenylethynyl)corannulene [4-Ar(c)5] and 1,3,5,7,9-pentakis(3,5-dimethylphenylethynyl)corannulene [5-Ar(c)5] form columnar structures, but the bowls are oriented in opposing directions. Additionally, the number of attached alkynyl arms is correlated with an increase in bowl depth of the corrannulene nucleus. Most of the aryl derivatives displayed high-quantum-efficiency solution luminescence and variable emission wavelengths that were dependent on the nature of the substitution.
In this short review, an approach to the isolation of potential antimalarial agents and lead compounds is outlined. A discussion of organism collection, followed by a description of biological testing and isolation methodologies, is also given. For two organisms, details of their secondary metabolite chemistry are reported. From one of these, Laurencia papillosa, the two aromatic compounds p-hydroxybenzaldehyde (1) and p-methoxybenzyl alcohol (2) were isolated. From the other, the tropical marine sponge Cymbastela hooperi, 15 diterpenes (3-17), which contain isonitrile, isothiocyanate, and isocyanate functionalities, are reported. Together with the diterpenes, three sesquiterpene hydrocarbons, 18-20, and the thiol, 21, were obtained. All structures were established by spectroscopic methods, particularly 1H-1H and 1H-13C shift-correlated 2D NMR spectroscopy and accurate mass measurement (HREIMS). The majority of isolates demonstrate significant and selective in vitro antimalarial activity. For compounds 4-17 a brief description of their possible structure-activity relationships is provided.
We report the design, synthesis, and application of a (N^C^C)-ligand framework able to stabilize highly electron-deprived gold(III) species. This novel platform enabled the preparation of C(sp(2))-gold(III) fluorides for the first time in monomeric, easy-to-handle, bench-stable form by a Cl/F ligand-exchange reaction. Devoid of oxidative conditions or stoichiometric use of toxic Hg salts, this method was applied to the preparation of multiple [C(sp(2))-Au(III)-F] complexes, which were used as mechanistic probes for the study of the unique properties and intrinsic reactivity of Au-F bonds. The improved photophysical properties of [(N^C^C)Au(III)] complexes compared to classical pincer (C^N^C)-Au systems paves the way for the design of new late-transition-metal-based OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.