[1] We have analyzed a brief period of same-day observations of the Martian ionosphere using data obtained in December 2004 from the Mars Global Surveyor (MGS) and Mars Express (MEX) radio occultation experiments. These data were taken shortly after sunrise under solstice conditions in both hemispheres, with MGS in the summer (northern) hemisphere at high latitudes while MEX was in the winter (southern) hemisphere at midlatitudes. Such two-satellite, dual-hemisphere data sets are unique for the modern era of ionospheric observations at Mars and provide good test cases for constraints of key parameters commonly used in models of the Martian ionosphere. Several iterations of a 1-dimensional model are developed in attempts to simulate more successfully the altitudes, absolute magnitudes and shapes of the two photo-chemical layers (M1 and M2) obtained during the joint MGS-MEX observing period. Three basic processes are examined: (1) selection of the optimal model neutral atmospheres, (2) the effects due to departures from thermal equilibrium between electrons, ions and neutrals, (3) methods of handling secondary ionization. While general circulation models fully coupled to plasma transport codes are required for global simulations of the full system, the computational complexity and computer resources needed often result in the use of parameterizations relating electron and ion temperatures to neutral temperatures and secondary ionization to primary photo-ionization profiles. Here we develop such schemes and test them within the framework of same day observations in both hemispheres. The occurrence of same day, separate hemisphere, radio occultation profiles is important because the solar irradiance has to be held constant for modeling both sites, and thus this is the first study of this kind to be done. The overall results stress the dominant influence of solar zenith angle effects on production for the M2-layer via primary solar ionization, its augmentation by ∼30% due to secondary ionization, and further enhancements due to reduced chemical loss when the electron temperature exceeds the neutral temperature. Secondary ionization is the most crucial process for the M1-layer. The influence of very different crustal magnetic field morphologies at the two observing locations did not seem to be a crucial source of differentiation for processes that control the average values of the peak electron densities of the two photo-chemical layers.
[1] Electron densities in planetary ionospheres increase substantially during solar flares in response to the increased solar irradiance at soft X-ray and extreme ultraviolet wavelengths. Here we modify an existing model of the ionosphere of Mars to incorporate time-dependent solar irradiances and use it to simulate ionospheric conditions during the X14.4 and M7.8 solar flares of 15 and 26 April 2001, respectively. Simulations were validated by comparison to Mars Global Surveyor radio occultation measurements of vertical profiles of ionospheric electron density. Adjustments to the model's representation of the neutral atmosphere were required to adequately reproduce the observations before and during these solar flares. An accurate representation of electron-impact ionization, an important process in the lower ionosphere of Mars, is required in order to adequately simulate the doubling of electron densities that can occur in the lower ionosphere of Mars during a solar flare. We used the W-value representation of electron-impact ionization, in which the number of ion-electron pairs created per photon absorbed equals the ratio of the difference between photon energy and the ionization potential of carbon dioxide to the W-value. A range of possible W-values for Mars have been suggested in the literature, and a value of 28 eV led to the best reproduction of flare-affected observations. Simulated enhancements in the electron density are largest and persist the longest in the M1 region. We predict that the peak electron density in the M1 region can exceed that of the M2 region for short periods during intense solar flares.
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.