The role of dopamine as a reward prediction error signal in reinforcement learning tasks has been well-established over the past decades. Recent work has shown that the reward prediction error interpretation can also account for the effects of dopamine on interval timing by controlling the speed of subjective time. According to this theory, the timing of the dopamine signal relative to reward delivery dictates whether subjective time speeds up or slows down: Early DA signals speed up subjective time and late signals slow it down. To test this bidirectional prediction, we reanalyzed measurements of dopaminergic neurons in the substantia nigra pars compacta of mice performing a self-timed movement task. Using the slope of ramping dopamine activity as a read-out of subjective time speed, we found that trial-by-trial changes in the slope could be predicted from the timing of dopamine activity on the previous trial. This result provides a key piece of evidence supporting a unified computational theory of reinforcement learning and interval timing.
Rate-distortion theory provides a powerful framework for understanding the nature of human memory by formalizing the relationship between information rate (the average number of bits per stimulus transmitted across the memory channel) and distortion (the cost of memory errors). Here we show how this abstract computational-level framework can be realized by a model of neural population coding. The model reproduces key regularities of visual working memory, including some that were not previously explained by population coding models. We verify a novel prediction of the model by reanalyzing recordings of monkey prefrontal neurons during an oculomotor delayed response task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.