We describe here a GC/MS/MS method for the sensitive and concurrent determination of extracellular tryptophan and the kynurenine pathway metabolites kynurenine, 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) in rat brain. This metabolic cascade is increasingly linked to the pathophysiology of several neurological and psychiatric diseases. Methodological refinements, including optimization of MS conditions and addition of deuterated standards, resulted in assay linearity to the low nanomolar range. Measured in samples obtained by striatal microdialysis in vivo, basal levels of tryptophan, kynurenine and QUIN were 415, 89 and 8 nM, respectively, but 3-HK levels were below the limit of detection (<2 nM). Systemic injection of kynurenine (100 mg/kg, i.p.) did not affect extracellular tryptophan but produced detectable levels of extracellular 3-HK (peak after 2-3 h: ~50 nM) and raised extracellular QUIN levels (peak after 2 h: ~105 nM). The effect of this treatment on QUIN, but not on 3-HK, was potentiated in the NMDA-lesioned striatum. Our results indicate that the novel methodology, which allowed the measurement of extracellular kynurenine and 3-HK in the brain in vivo, will facilitate studies of brain kynurenines and of the interplay between peripheral and central kynurenine pathway function under physiological and pathological conditions.
ObjectiveRates of diabetes mellitus are higher in South Asians than in other populations and persist after migration. One unexplored cause may be higher exposure to persistent organic pollutants associated with diabetes in other populations. We compared organochlorine (OC) pesticide concentrations in South Asian immigrants and European whites to determine whether the disease was positively associated with OC pesticides in South Asians.Research Design and MethodsSouth Asians of Tamil or Telugu descent (n = 120) and European whites (n = 72) were recruited into the London Life Sciences Population Study cohort. Blood samples as well as biometric, clinical, and survey data were collected. Plasma levels of p,p′-dichlorodiphenyldichloroethylene (DDE), p,p′- dichlorodiphenyltrichloroethane, β-hexachlorohexane (HCH), and polychlorinated biphenyl-118 were analyzed by gas chromatography-mass spectrometry. South Asian cases and controls were categorized by binary exposure (above vs below the 50th percentile) to perform logistic regression.ResultsTamils had approximately threefold to ninefold higher levels of OC pesticides, and Telugus had ninefold to 30-fold higher levels compared with European whites. The odds of exposure to p,p′-DDE above the 50th percentile was significantly greater in South Asian diabetes cases than in controls (OR: 7.00; 95% CI: 2.22, 22.06). The odds of exposure to β-HCH above the 50th percentile was significantly greater in the Tamil cases than in controls (OR: 9.35; 95% CI: 2.43, 35.97).ConclusionsSouth Asian immigrants have a higher body burden of OC pesticides than European whites. Diabetes mellitus is associated with higher p,p′-DDE and β-HCH concentrations in this population. Additional longitudinal studies of South Asian populations should be performed.
Honey bee ( Apis mellifera ) health has been severely impacted by multiple environmental stressors including parasitic infection, pesticide exposure, and poor nutrition. The decline in bee health is therefore a complex multifactorial problem which requires a holistic investigative approach. Within the exposome paradigm, the combined exposure to the environment, drugs, food, and individuals’ internal biochemistry affects health in positive and negative ways. In the context of the exposome, honey bee hive infection with parasites such as Nosema ceranae is also a form of environmental exposure. In this study, we hypothesized that exposure to xenobiotic pesticides and other environmental chemicals increases susceptibility to N . ceranae infection upon incidental exposure to the parasite. We further queried whether these exposures could be linked to changes in conserved metabolic biological pathways. From 30 hives sampled across 10 sites, a total of 2,352 chemical features were found via gas chromatography-time of flight mass spectrometry (GC-TOF) in extracts of honey bees collected from each hive. Of these, 20 pesticides were identified and annotated, and found to be significantly associated with N . ceranae infection. We further determined that infected hives were linked to a greater number of xenobiotic exposures, and the relative concentration of the exposures were not linked to the presence of a N . ceranae infection. In the exposome profiles of the bees, we also found chemicals inherent to known biological metabolic pathways of Apis mellifera and identified 9 dysregulated pathways. These findings have led us to posit that for hives exposed to similar chemicals, those that incur multiple, simultaneous xenobiotic stressors have a greater incidence of infection with N . ceranae . Mechanistically, our results suggests the overwhelming nature of these exposures negatively affects the biological functioning of the bee, and could explain how the decline in bee populations is associated with pesticide exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.