The inert-gas-halogen complexes have been studied for several decades by jet spectroscopy. Much of the seemingly bizarre behavior has become understandable in terms of two virtually isoenergetic isomer forms. The recently recognized linear isomer of ArI2 has a virtually continuous B ¬ X excitation spectrum. It also undergoes a very rapid vibrational predissociation, and suffers no electronic quenching from the B state. The well-known T-shaped isomer shows slow vibrational predissociation, which is competitive with electronic quenching. The quenching distorts the vibrational distribution of the I2 B state photofragments, consequently leading to a false estimation of the T-shaped ArI2 (B) state dissociation energy. The binding energies for the T-shaped ArI2 (X) and ArI2 (B) are unambiguously determined from the recent dispersed fluorescence study, which are also in good accord with the ab initio calculation. We discuss aspects of pure vibrational laser-induced fluorescence of hydrogen fluoride complexes. We contrast the behavior of ArHF with NeHF and present new results for the vHF = 3 level of NeHF. PACS Nos.: 33.80Gj, 34.30th
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.