Dipeptidyl peptidase IV (DPPIV) is a cell surface peptidase expressed by normal melanocytes, epithelial cells, and other cells. Malignant cells, including melanomas and carcinomas, frequently lose or alter DPPIV cell surface expression. Loss of DPPIV expression occurs during melanoma progression at a stage where transformed melanocytes become independent of exogenous growth factors for survival. Tetracycline-inducible expression vectors were constructed to express DPPIV in human melanoma cells. Reexpressing DPPIV in melanoma cells at or below levels expressed by normal melanocytes induced a profound change in phenotype that was characteristic of normal melanocytes. DPPIV expression led to a loss of tumorigenicity, anchorage-independent growth, a reversal in a block in differentiation, and an acquired dependence on exogenous growth factors for cell survival. Suppression of tumorigenicity and reversal of a block in differentiation were dependent on serine protease activity, assessed using mutant DPPIV molecules containing serine→alanine substitutions. Surprisingly, dependence on exogenous growth factors was not dependent on serine protease activity. Reexpression of either wild-type or mutant DPPIV rescued expression of a second putative cell surface serine peptidase, fibroblast activation protein α, which can form a heterodimer with DPPIV. This observation suggests that rescue of fibroblast activation protein α may play a role in regulating growth of melanocytic cells. These results support the view that downregulation of DPPIV is an important early event in the pathogenesis of melanoma.
Variability in the phenotype of cells comprising individual tumours is a striking feature of animal and human cancer and is generally referred to as tumour heterogeneity. Studies of clonally derived cell populations from tumours that originated presumably from a single transformed cell have shown that tumours are made up of cells that differ in a variety of traits, including drug resistance, antigen expression and metastatic potential. The origin and maintenance of tumour heterogeneity are unclear, but mutational and epigenetic mechanisms are thought to be involved. Here we report the results of a search for transforming genes in human melanoma which have raised the possibility that ras gene activation follows the same variable pattern as other traits involved in tumour heterogeneity. DNA from 4 of 30 melanoma cell lines yielded transforming ras genes in the NIH/3T3 assay. Of five cell lines originating from separate metastatic deposits of a single patient, only one contained activated ras, indicating heterogeneity in ras activation in this case and suggesting that ras activation was not involved in tumour initiation or maintenance in this patient.
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow-and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow-and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis. ' International Society for Analytical CytologyKey terms ionizing radiation; DNA topoisomerase inhibitors; DNA double-strand breaks; carcinogens; tobacco smoke; replication stress; genotoxins; DNA photolysis ACTIVATION OF ATM AND PHOSPHORYLATION OF HISTONE H2AX TRIGGERED BY DNA DAMAGE Ataxia telangiectasia mutated (ATM) is a protein kinase that becomes activated in response to DNA damage, particularly when the damage involves formation of DNA double-strand breaks (DSBs) (1-9; Fig. 1). Interestingly, the initial activation of ATM does not takes place at the exact site of the DSB but at some distance from it, and appears to be triggered by a change in the higher order of chromatin structure caused by unwinding and relaxation of the topological stress of the DNA double helix upon induction of the DSB (4). Activation of ATM occurs through its autophosphorylation on Ser1981 and it requires prior ATM acetylation that is mediated by the Tip60 histone acetyltransferase (13). Ser1981 ATM phosphorylation causes dissociation of the inactive ATM dimer or multimer into single monomeric units
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.