The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and Key Points: • Updated Community Land Model has more hydrological and ecological process fidelity and more comprehensive representation of land management. • The model is systematically evaluated using International Land Model Benchmarking system and shows marked improvement over prior versions. parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time-evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5. Plain Language Summary The Community Land Model (CLM) is the land component of the widely used Community Earth System Model (CESM). Here, we introduce model developments included in CLM version 5 (CLM5), the default land component for CESM2 which will be used for the Coupled Model Intercomparison Project (CMIP6). CLM5 includes many new and updated processes including (1) hydrology and snow features such as spatially explicit soil depth, canopy snow processes, a simple firn model, and a more mechanistic river model, (2) plant hydraulics and hydraulic redistribution, (3) revised nitrogen cycling with flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake, (4) expansion to six crop types (global) and time-evolving irrigated areas and fertilization rates, (5) improved urban building energy model, and (6) carbon isotopes. New optional features include a demographically structured dynamic vegetat...
The Department of Energy (DOE) supported Parallel Climate Model (PCM) makes use of the NCAR Community Climate Model (CCM3) and Land Surface Model (LSM) for the atmospheric and land surface components, respectively, the DOE Los Alamos National Laboratory Parallel Ocean Program (POP) for the ocean component, and the Naval Postgraduate School sea-ice model. The PCM executes on several distributed and shared memory computer systems. The coupling method is similar to that used in the NCAR Climate System Model (CSM) in that a¯ux coupler ties the components together, with interpolations between the dierent grids of the component models. Flux adjustments are not used in the PCM. The ocean component has 2/3°average horizontal grid spacing with 32 vertical levels and a free surface that allows calculation of sea level changes. Near the equator, the grid spacing is approximately 1/2°in latitude to better capture the ocean equatorial dynamics. The North Pole is rotated over northern North America thus producing resolution smaller than 2/3°in the North Atlantic where the sinking part of the world conveyor circulation largely takes place. Because this ocean model component does not have a computational point at the North Pole, the Arctic Ocean circulation systems are more realistic and similar to the observed. The elastic viscous plastic sea ice model has a grid spacing of 27 km to represent small-scale features such as ice transport through the Canadian Archipelago and the East Greenland current region. Results from a 300 year present-day coupled climate control simulation are presented, as well as for a transient 1% per year compound CO 2 increase experiment which shows a global warming of 1.27°C for a 10 year average at the doubling point of CO 2 and 2.89°C at the quadrupling point. There is a gradual warming beyond the doubling and quadrupling points with CO 2 held constant. Globally averaged sea level rise at the time of CO 2 doubling is approximately 7 cm and at the time of quadrupling it is 23 cm. Some of the regional sea level changes are larger and re¯ect the adjustments in the temperature, salinity, internal ocean dynamics, surface heat¯ux, and wind stress on the ocean. A 0.5% per year CO 2 increase experiment also was performed showing a global warming of 1.5°C around the time of CO 2 doubling and a similar warming pattern to the 1% CO 2 per year increase experiment. El NinÄ o and La NinÄ a events in the tropical Paci®c show approximately the observed frequency distribution and amplitude, which leads to near observed levels of variability on interannual time scales.
Abstract. OASIS is coupling software developed primarily for use in the climate community. It provides the ability to couple different models 1 with low implementation and performance overhead. OASIS3-MCT is the latest version of OASIS. It includes several improvements compared to OASIS3, including elimination of a separate hub coupler process, parallelization of the coupling communication and runtime grid interpolation, and the ability to easily reuse mapping weight files. OASIS3-MCT_3.0 is the latest release and includes the ability to couple between components running sequentially on the same set of tasks as well as to couple within a single component between different grids or decompositions such as physics, dynamics, and I/O. OASIS3-MCT has been tested with different configurations on up to 32 000 processes, with components running on high-resolution grids with up to 1.5 million grid cells, and with over 10 000 2-D coupling fields. Several new features will be available in OASIS3-MCT_4.0, and some of those are also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.