Aspirin causes bronchoconstriction in aspirin-intolerant asthma (AIA) patients by triggering cysteinyl-leukotriene (cys-LT) production, probably by removing PGE2-dependent inhibition. To investigate why aspirin does not cause bronchoconstriction in all individuals, we immunostained enzymes of the leukotriene and prostanoid pathways in bronchial biopsies from AIA patients, aspirin-tolerant asthma (ATA) patients, and normal (N) subjects. Counts of cells expressing the terminal enzyme for cys-LT synthesis, LTC4 synthase, were fivefold higher in AIA biopsies (11.5+/-2.2 cells/mm2, n = 10) than in ATA biopsies (2.2+/-0.7, n = 10; P = 0. 0006) and 18-fold higher than in N biopsies (0.6+/-0.4, n = 9; P = 0. 0002). Immunostaining for 5-lipoxygenase, its activating protein (FLAP), LTA4 hydrolase, cyclooxygenase (COX)-1, and COX-2 did not differ. Enhanced baseline cys-LT levels in bronchoalveolar lavage (BAL) fluid of AIA patients correlated uniquely with bronchial counts of LTC4 synthase+ cells (rho = 0.83, P = 0.01). Lysine-aspirin challenge released additional cys-LTs into BAL fluid in AIA patients (200+/-120 pg/ml, n = 8) but not in ATA patients (0. 7+/-5.1, n = 5; P = 0.007). Bronchial responsiveness to lysine-aspirin correlated exclusively with LTC4 synthase+ cell counts (rho = -0.63, P = 0.049, n = 10). Aspirin may remove PGE2-dependent suppression in all subjects, but only in AIA patients does increased bronchial expression of LTC4 synthase allow marked overproduction of cys-LTs leading to bronchoconstriction.
The eosinophil is well recognized as a central effector cell in the inflamed asthmatic airway. Eosinophils release toxic basic proteins and lipid mediators such as cysteinyl-leukotrienes that cause bronchial epithelial damage and airflow obstruction. Eosinophil-selective cytokines and chemokines including interleukin (IL)-5, eotaxin and RANTES may represent targets for novel asthma therapies. In contrast, the role of the neutrophil in asthma remains relatively obscure. Recent evidence from the ENFUMOSA project and elsewhere suggests that neutrophils not only contribute to acute asthma exacerbations, but also are present in high numbers in the airways of patients with chronic severe asthma. Production by neutrophils of lipid mediators, reactive oxygen intermediates (ROI) and proteases such as elastase, may contribute to airflow obstruction, epithelial damage and remodelling. Leukotriene B4 and cytokines such as IL-8, granulocyte-macrophage colony stimulating factor (GM-CSF), and tumour necrosis factor (TNF)alpha chemoattract neutrophils and reduce neutrophil apoptosis, and selective agents directed against these may prevent neutrophil influx and accumulation. Airway neutrophilia remains apparent in severe asthma patients even after treatment with high doses of corticosteroids. In vitro, corticosteroids paradoxically enhance neutrophil survival by reducing apoptosis, so corticosteroid therapy may exacerbate neutrophil activity in vivo. Both corticosteroids and cytokines may suppress neutrophil apoptosis by upregulating endogenous synthesis of leukotriene (LT)B4. Specific blockade of LTB4 synthesis or LTB4 receptors may induce neutrophil apoptosis and combat the unwanted effects of high-dose steroids on neutrophil survival. Phagocytosis of apoptotic neutrophils stimulates important signals that down-regulate pro-inflammatory cytokine production by macrophages, allowing resolution and repair processes to prevail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.