BRAF inhibitors target the BRAF-V600E/K mutated kinase, the driver mutation found in 50% of cutaneous melanoma. They give unprecedented anti-tumor responses but acquisition of resistance ultimately limits their clinical benefit. The master regulators driving the expression of resistance-genes remain poorly understood. Here, we demonstrate that the Aryl hydrocarbon Receptor (AhR) transcription factor is constitutively activated in a subset of melanoma cells, promoting the dedifferentiation of melanoma cells and the expression of BRAFi-resistance genes. Typically, under BRAFi pressure, death of BRAFi-sensitive cells leads to an enrichment of a small subpopulation of AhR-activated and BRAFi-persister cells, responsible for relapse. Also, differentiated and BRAFi-sensitive cells can be redirected towards an AhR-dependent resistant program using AhR agonists. We thus identify Resveratrol, a clinically compatible AhR-antagonist that abrogates deleterious AhR sustained-activation. Combined with BRAFi, Resveratrol reduces the number of BRAFi-resistant cells and delays tumor growth. We thus propose AhR-impairment as a strategy to overcome melanoma resistance.
Chondroitin sulfate-E (CS-E) oligosaccharidic analogues (di to hexa) were prepared from lactose. In these compounds, the 2-acetamido group was replaced by a hydroxyl group. This modification speeded up the synthesis, and large oligosaccharides were constructed in a few steps from a lactose-originated block. The protecting groups used were as follows; Fmoc for hydroxyl groups to be glycosylated, allyl group for anomeric position protection, and trichoroacetimidate leaving groups were used to prepare up to octasaccharides. We took advantage of the presence of allyl group to develop a click biotinylation, through its transformation into a 3-azido-2-hydroxyl propyl group in two steps (epoxidation and sodium azide epoxide opening). The biotinylating agent was a water-soluble propargylated and biotinylated triethylene glycol (PEG). By using surface plasmon resonance (SPR), it was shown that the di-, tetra-, and hexasaccharides display a binding affinity and selectivity toward HSF/GSF and CXCL12 similar to that of CS-E. A parallel study confirmed their mimicry of natural compounds, based on the hexasaccharide interaction with Otx2, a homeodomain protein involved in brain maturation, thus validating our simplification approach to synthesize bioactive GAG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.