Since the 1970s the notion of “translation competence” has been viewed as at least 1) a mode of bilingualism, open to linguistic analysis, 2) a question of market demands, given to extreme historical and social change, 3) a multicomponent competence, involving sets of skills that are linguistic, cultural, technological and professional, and 4) a “supercompetence” that would somehow stand above the rest. The general trend among theorists has been to expand the multicomponent model so as to bring new skills and proficiencies into the field of translator training. This trend may be expected to continue with the increasing use of electronic tools. Here it is argued, however, that the multicomponential expansions of competence are partly grounded in institutional interests and are conceptually flawed in that they will always be one or two steps behind market demands. On the other hand, a simple minimalist concept of translation competence, based on the production then elimination of alternatives, can help orient translator training in times of rapid technological and professional change.
Résumé de l'article L'intégration de la traduction automatique statistique (TA) aux logiciels de mémoire de traduction (MT) est en train de produire une gamme de technologies de MT/TA qui devraient remplacer dans de nombreux domaines la traduction entièrement humaine. Ce processus ouvre la voie à son tour à une transformation des compétences procédurales des traducteurs. Dans la mesure où les experts non traducteurs peuvent prendre en charge certaines tâches dans certains domaines, on s'attend à ce que les traducteurs s'occupent de plus en plus de la post-édition, sans avoir besoin de connaissances approfondies sur le contenu des textes, et éventuellement avec une insistance moindre sur la compétence dans la langue étrangère. Cette reconfiguration de l'espace traductif l'ouvre aussi aux fonctions productives des bases de données MT/TA, en sorte que l'on ne reconnaît plus l'organisation binaire autour du couple « source » et « cible » : nous avons affaire maintenant à un « texte de départ » accompagné de matériaux également de départ comme le sont les mémoires de traduction autorisées, les glossaires, les bases terminologiques et les propositions qui proviennent de la traduction automatique. Afin d'identifier les savoir-faire nécessaires pour travailler dans cet espace, on a recours ici à une approche « négative » et minimaliste : il faut tout d'abord identifier les problèmes de prise de décision qui résultent de l'emploi de des technologies MT/TA, pour ensuite essayer de décrire les compétences procédurales correspondantes. Nous proposons dix compétences de ce genre, organisées en trois groupes assez traditionnels : apprendre à apprendre, apprendre à accorder une confiance relative et raisonnée aux sources d'information, et apprendre à adapter la révision et la correction aux nécessités de la technologie. L'acquisition de ces compétences peut être favorisée par une pédagogie qui intègre les espaces adéquats pour le cours de traduction, l'emploi transversal des technologies MT/TA, l'autoanalyse des processus traductifs, ainsi que les projets collaboratifs qui font appel aux experts non traducteurs. RÉSUMÉL'intégration de la traduction automatique statistique (TA) aux logiciels de mémoire de traduction (MT) est en train de produire une gamme de technologies de MT/TA qui devraient remplacer dans de nombreux domaines la traduction entièrement humaine. Ce processus ouvre la voie à son tour à une transformation des compétences procédu-rales des traducteurs. Dans la mesure où les experts non traducteurs peuvent prendre en charge certaines tâches dans certains domaines, on s'attend à ce que les traducteurs s'occupent de plus en plus de la post-édition, sans avoir besoin de connaissances approfondies sur le contenu des textes, et éventuellement avec une insistance moindre sur la compétence dans la langue étrangère. Cette reconfiguration de l'espace traductif l'ouvre aussi aux fonctions productives des bases de données MT/TA, en sorte que l'on ne reconnaît plus l'organisation binaire autour du couple « source » et « cibl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.