Electroceramics are advanced materials whose properties and applications depend on the close control of structure, composition, ceramic texture, dopants and dopant (or defect) distribution. Impedance spectroscopy is a powerful technique for unravelling the complexities of such materials, which functions by utilizing the different frequency dependences of the constituent components for their separation. Thus, electrical inhomogeneities in ceramic electrolytes, electrode/electrolyte interfaces, surface layers on glasses, ferroelectricity, positive temperature coefficient of resistance behavior and even ferrimagnetism can all be probed, successfully, using this technique.
There has been much recent interest in a so-called “giant-dielectric phenomenon” displayed by an unusual cubic perovskite-type material, CaCu3Ti4O12; however, the origin of the high permittivity has been unclear [M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 323 (2000); C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001); A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid State Commun. 115, 217 (2000)]. Impedance spectroscopy on CaCu3Ti4O12 ceramics demonstrates that they are electrically heterogeneous and consist of semiconducting grains with insulating grain boundaries. The giant-dielectric phenomenon is therefore attributed to a grain boundary (internal) barrier layer capacitance (IBLC) instead of an intrinsic property associated with the crystal structure. This barrier layer electrical microstructure with effective permittivity values in excess of 10 000 can be fabricated by single-step processing in air at ∼1100 °C. CaCu3Ti4O12 is an attractive option to the currently used BaTiO3-based materials which require complex, multistage processing routes to produce IBLCs of similar capacity.
The mesolimbic dopamine system is centrally involved in reward and goal-directed behavior, and it has been implicated in multiple psychiatric disorders. Understanding the mechanism by which dopamine participates in these activities requires comprehension of the dynamics of dopamine release. Here we report dissociable regulation of dopamine neuron discharge by two separate afferent systems in rats; inhibition of pallidal afferents selectively increased the population activity of dopamine neurons, whereas activation of pedunculopontine inputs increased burst firing. Only the increase in population activity increased ventral striatal dopamine efflux. After blockade of dopamine reuptake, however, enhanced bursting increased dopamine efflux three times more than did enhanced population activity. These results provide insight into multiple regulatory systems that modulate dopamine system function: burst firing induces massive synaptic dopamine release, which is rapidly removed by reuptake before escaping the synaptic cleft, whereas increased population activity modulates tonic extrasynaptic dopamine levels that are less influenced by reuptake.
The grain size dependence of the “giant dielectric effect” in CaCu3Ti4O12 ceramics (arising from a semiconducting grain/insulating grain boundary microstructure) has been revealed by impedance spectroscopy of ceramics sintered for 3 h (see Figure, left) and 24 h (see Figure, right); a rise in permittivity from 9000 to 280 000 was found. The easy‐to‐prepare CaCu3Ti4O12 is a hot candidate for ceramic capacitor applications.
Polycrystalline barium titanate that has been doped to give a positive temperature coefficient of resistance (PTCR) effect is an inhomogeneous material electrically. Analysis of ac impedance data using the complex impedance plane representation gives the dc resistance of PTCR ceramics. By additional use of the complex electric modulus formalism to analyze the same data, the inhomogeneous nature of the ceramics may be probed. This reveals the presence of two, sometimes three elements in the equivalent circuit. Grain-boundary and bulk effects may be distinguished from capacitance data: grain-boundary effects have temperature-independent capacitances, whereas bulk effects show a capacitance maximum at the Curie point and Curie–Weiss behavior above the Curie point. Both grain-boundary and bulk effects appear to contribute to the PTCR effect. These results reveal limitations in current theories of the PTCR effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.