Clock synchronization is highly desirable in many sensor networking applications. It enables event ordering, coordinated actuation, energy-efficient communication and duty cycling. This paper presents a novel low-power hardware module for achieving global clock synchronization by tuning to the magnetic field radiating from existing AC power lines. This signal can be used as a global clock source for batteryoperated sensor nodes to eliminate drift between nodes over time even when they are not passing messages. With this scheme, each receiver is frequency-locked with each other, but there is typically a phase-offset between them. Since these phase offsets tend to be constant, a higher-level compensation protocol can be used to globally synchronize a sensor network. We present the design of an LC tank receiver circuit tuned to the AC 60Hz signal which we call a Syntonistor. The Syntonistor incorporates a low-power microcontroller that filters the signal induced from AC power lines generating a pulse-per-second output for easy interfacing with sensor nodes. The hardware consumes less than 58µW which is 2-3 times lower than the idle state of most sensor networking MAC protocols. Next, we evaluate a software clock-recovery technique running on the local microcontroller that minimizes timing jitter and provides robustness to noise. Finally, we provide a protocol that sets a global notion of time by accounting for phase-offsets. We evaluate the synchronization accuracy and energy performance as compared to in-band message passing schemes. The use of out-of-band signals for clock synchronization has the useful property of decoupling the synchronization scheme from any particular MAC protocol. Our experiments show that over a 11 day period, eight nodes distributed across the floor of the CIC building on Carnegie Mellon's campus remained synchronized on an average to less than 1ms without exchanging any radio messages beyond the initialization phase.
In multiprocessor systems, the traffic on the bus does not solely originate from data transfers due to data dependencies between tasks, but is also affected by memory transfers as result of cache misses. This has a huge impact on worst-case execution time (WCET) analysis and, in general, on the predictability of real-time applications implemented on such systems. As opposed to the WCET analysis performed for a single processor system, where the cache miss penalty is considered constant, in a multiprocessor system each cache miss has a variable penalty, depending on the bus contention. This affects the tasks' WCET which, however, is needed in order to perform system scheduling. At the same time, the WCET depends on the system schedule due to the bus interference. In this paper we present an approach to worst-case execution time analysis and system scheduling for real-time applications implemented on multiprocessor SoC architectures. The emphasis of this paper is on the bus scheduling policy and its optimization, which is of huge importance for the performance of such a predictable multiprocessor application.
Abstract-The omnipresence of indoor lighting makes it an ideal vehicle for pervasive communication with mobile devices. In this paper, we present a communication scheme that enables interior ambient LED lighting systems to send data to mobile devices using either cameras or light sensors. By exploiting rolling shutter camera sensors that are common on tablets, laptops and smartphones, it is possible to detect high-frequency changes in light intensity reflected off of surfaces and in direct line-of-sight of the camera. We present a demodulation approach that allows smartphones to accurately detect frequencies as high as 8kHz with 0.2kHz channel separation. In order to avoid humanly perceivable flicker in the lighting, our system operates at frequencies above 2kHz and compensates for the non-ideal frequency response of standard LED drivers by adjusting the light's duty-cycle. By modulating the PWM signal commonly used to drive LED lighting systems, we are able to encode data that can be used as localization landmarks. We show through experiments how a binary frequency shift keying modulation scheme can be used to transmit data at 1.25 bytes per second (fast enough to send an ID code) from up to 29 unique light sources simultaneously in a single collision domain. We also show how tags can demodulate the same signals using a light sensor instead of a camera for low-power applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.