The reaction of bis(3,5-dimethylpyrazolyl)methylphenol N(2)O(Ar)H (1) with NaH in THF formed dimeric [Na(kappa(2)-N(2)O(Ar))(THF)](2) (2), which contains a kappa(2)(N,O)-bound bidentate N(2)O(Ar) ligand. The reaction of 1 with Mg(n)Bu(2) gave the four-coordinate monomeric butyl compound Mg(N(2)O(Ar))(n)Bu (3), whereas with (n)BuMgCl, a mixture of products was formed, including the six-coordinate homoleptic species Mg(N(2)O(Ar))(2) (4). The reaction of [Na(kappa(2)-N(2)O(Ar))(THF)](2) with (n)BuMgCl also gave 3, as did the redistribution reaction of Mg(n)Bu(2) with 4. The reaction of 1 with Mg{N(SiRMe(2))(2)}(2) afforded the four-coordinate amide derivatives Mg(N(2)O(Ar)){N(SiRMe(2))(2)} (R = Me (6) or H (7)), together with 4. The reactions of 1 with ZnMe(2) or Zn{N(SiMe(3))(2)}(2) gave the monomeric compounds Zn(N(2)O(Ar))Me (8) and Zn(N(2)O(Ar)){N(SiMe(3))(2)} (9), respectively. The reaction 9 of with HCl formed Zn(N(2)O(Ar))Cl (11), and subsequent addition of LiN(SiHMe(2))(2) to 11 led to Zn(N(2)O(Ar)){N(SiHMe(2))(2)} (12). The reaction of 1 with either Zn{N(SiMe(3))(2)}(2) or 9 gave Zn(N(2)O(Ar))(2). The compounds 2, 3, 4, 6, 8, 9 and 11 were crystallographically characterized. Compound was very active for the ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) but the process was very poorly controlled as judged by the M(n) and polydispersity index of the polymer. Compounds 3, 8, 9 and 12 gave poor conversions to poly(epsilon-CL) over extended periods. N(2)O(Ar)H = 2,4-di-tert-butyl-6-(bis(3,5-dimethylpyrazolyl)methyl)phenol.
We report a range of new transformations of the diamide-amine supported Ti=NNPh(2) functional group with a variety of unsaturated substrates, along with DFT studies of the key mechanisms. Reaction of [Ti(N(2) N(py) )(NNPh(2) )(py)] (4, N(2) N(py) =(2-NC(5) H(4) )CMe(CH(2) NSiMe(3) )(2) ; py=pyridine) with MeCN gave the dimeric species [Ti(2) (N(2) N(py) )(2) {μ-NC(Me)(NNPh(2) )}(2) ] through a [2+2] cycloaddition process. Reaction of 4 or [Ti(N(2) N(Me) )(NNPh(2) )(py)] (5, N(2) N(Me) =MeN(CH(2) CH(2) NSiMe(3) )(2) ) with fluorinated benzonitriles gave the terminal hydrazonamide complexes [Ti(N(2) N(R) ){NC(Ar F x)NNPh(2) }(py)] (R=py or Me; Ar F x=2,6-C(6) H(3) F(2) or C(6) F(5) ). DFT studies showed that this proceeds through an overall [2+2] cycloaddition-reverse cycloaddition, resulting in net insertion of Ar F xCN into the Ti=N(α) bonds of the respective hydrazides. Reaction of 4 with a mixture of MeCN and PhCCMe gave the metallacycle [Ti(N(2) N(py) ){NC(Me)C(Ph)C(Me)NNPh(2) }] by sequential coupling of Ti=NNPh(2) with PhCCMe and then MeCN. A related product, [Ti(N(2) N(py) ){NC(Me)C(Ar(F) )C(H)NNPh(2) }], was formed by insertion of MeCN into the Ti-C bond of the isolated azatitanacyclobutene [Ti(N(2) N(py) ){N(NPh(2) )C(H)C(Ar(F) )}] (Ar(F) =3-C(6) H(4) F). Reaction of 4 with two equivalents of B(Ar F 5)(3) (Ar F 5=C(6) F(5) ) formed the zwitterionic borate [Ti(N(2) N(py) ){η(2) -N(NPh(2) )B(Ar F 5)(3) }] by electrophilic attack at N(α) . Compounds 4 and 5 reacted with tBuNC and/or XylNC (Xyl=2,6-C(6) H(3) Me(2) ) to give the N(α)-N(β) bond cleavage products, [Ti(N(2) N(R) )(NCNR')(NPh(2) )] (R=py or Me; R'=tBu or Xyl), containing metallated carbodiimide ligands. DFT studies of these reactions found an initial addition of RNC across Ti=N(α) followed by N(β) coordination, and finally complete N(α) transfer from the NNPh(2) to the RNC fragment. Reaction of 5 with Ar'NCE (E=O, S, Se; Ar'=2,6-C(6) H(3) iPr(2) ) gave the [2+2] cycloaddition products [Ti(N(2) N(Me) ){N(NPh(2) )C(NAr')O}(py)] and [Ti(N(2) N(Me) ){N(NPh(2) )C(NAr')E}] (E=S or Se), which did not undergo further transformation of the Ti-N-NPh(2) moiety.
A combined experimental and DFT study of the reactions of diamide-amine supported titanium hydrazides with alkynes is presented. Reaction of Ti(N2N(py))(NNPh2)(py) (1, N2N(py) = (2-NC5H4)CMe(CH2NSiMe3)2) with terminal and internal aryl alkynes ArCCR (Ar = Ph or substituted phenyl, R = Me or H) at room temperature gave the fully authenticated azatitanacyclobutenes Ti(N2N(py)){N(NPh2)C(R)CAr} via ArCCR [2 + 2] cycloaddition to the Ti=N(alpha) bond of the hydrazide ligand. In contrast, reaction of 1 with PhCCMe at 60 degrees C, or of Ti(N2NMe)(NNPh2)(py) (11, N2NMe = MeN(CH2CH2NSiMe3)2) with RCCMe (R = Me, Ph or substituted phenyl) at room temperature or below, gave vinyl imido compounds of the type Ti(N2N(R')){NC(R)C(Me)NPh2}(py), in which RCCMe had undergone net insertion into the N(alpha)-N(beta) bond. These are the first examples of this type of reaction for any metal hydrazide. The reaction of 11 with PhCCMe had the activation parameters DeltaH(double dagger) = 18.8(4) kcal mol(-1), DeltaS(double dagger) = 1(1) cal mol(-1) K(-1) and DeltaG(298)(double dagger) = 18.5(7) kcal mol(-1). Mechanistic and DFT studies for 1 and 11 found that the N(alpha)-N(beta) insertion event is preceded by alkyne cycloaddition to Ti=N(alpha), and that N(alpha)-N(beta) bond "insertion" is really an intramolecular N(alpha) atom migration process within the azatitanacyclobutenes following intramolecular chelation of NPh2 of the hydrazide ligand. Electron-withdrawing aryl groups on ArCCMe stabilize the azatitanacyclobutenes and also promote a specific regiochemistry (ArC carbon bound to Ti). This in turn defines the regiochemistry of the overall N(alpha)-N(beta) insertion reaction (ArC carbon bound to N(alpha)). In contrast, electron-releasing aryl groups promote the final N(alpha) migration stage of the mechanism, and a Hammett analysis of the rates of insertion of (4-C6H4X)CCMe into the N(alpha)-N(beta) bond of 11 found a reaction constant, rho, of -0.74(5), consistent with NPA charge changes of ArC along the DFT reaction coordinate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.