The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.
T-dependent Ab responses are characterized by parallel extrafollicular plasmablast growth and germinal center (GC) formation. This study identifies that, in mice, the Ab response against Salmonella is novel in its kinetics and its regulation. It demonstrates that viable, attenuated Salmonella induce a massive early T-dependent extrafollicular response, whereas GC formation is delayed until 1 mo after infection. The extrafollicular Ab response with switching to IgG2c, the IgG2a equivalent in C57BL/6 mice, is well established by day 3 and persists through 5 wk. Switching is strongly T dependent, and the outer membrane proteins are shown to be major targets of the early switched IgG2c response, whereas flagellin and LPS are not. GC responses are associated with affinity maturation of IgG2c, and their induction is associated with bacterial burden because GC could be induced earlier by treating with antibiotics. Clearance of these bacteria is not a consequence of high-affinity Ab production, for clearance occurs equally in CD154-deficient mice, which do not develop GC, and wild-type mice. Nevertheless, transferred low- and high-affinity IgG2c and less efficiently IgM were shown to impede Salmonella colonization of splenic macrophages. Furthermore, Ab induced during the infection markedly reduces bacteremia. Thus, although Ab does not prevent the progress of established splenic infection, it can prevent primary infection and impedes secondary hemogenous spread of the disease. These results may explain why attenuated Salmonella-induced B cell responses are protective in secondary, but not primary infections.
Background Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation.MethodsIn this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog™ Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12.ConclusionThis study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.