Characterizing the resistance of mesh filters, in terms of pressure drop as a function of flow velocity, is an important part of modeling any filtration process. Most commonly, filters are characterized experimentally, which can be costly and time-consuming. This motivates a generalized numerical approach for characterizing the resistance of mesh filters based on the flow through a representative segment of a filter. There is uncertainty, however, in the correct specification of boundary conditions such that the numerical results for flow through the small segment match the overall behaviour of the filter. In this work, an experimentally validated numerical approach is developed by examining the velocity and turbulence intensity experienced across the filter. It has been shown that the flow resistance results are not sensitive to the turbulence intensity, but depend greatly on the imposed flow velocity. Specifying the peak velocity as the boundary condition in the filter simulations resulted in a good match with experiments, while using the bulk velocity did not reproduce the experimental results.
h i g h l i g h t s Cake resistance can be measured by drainage column with continuous level monitoring. Cake resistance can be scaled based on suspended solids in influent sample. A PID controller can maintain water level when suspended solids concentration varies. A one-dimensional process model can accurately predict filter performance.
Increased use of continuous fibre reinforced plastics (CoFRP) is being seen in the automotive industry due to their high strength specific properties. The manufacturing process, however, is still expensive due to the number of critical steps and material cost. Cost reduction is being combated by computational modeling of the infiltration and curing process to predict void formation and other potential defects. The accuracy of these simulations is highly dependent on capturing the presence of the carbon sheets in the mold due to the large differences in permeability between flow parallel and normal to the fibre tows. This work presents a geometry based method for locally orienting the fibre and thickness direction for 2D extruded CoFRP components. The capabilities of these methods will be presented by comparing the fibre orientation prediction for two geometries (i.e., hat channel and double dome) using 3 difference draping schemes (i.e., 0°, 45°, 90°) against the results of a validated draping simulation developed in LS-DYNA.
Due to the high design freedom and weight specific properties carbon fiber reinforced plastics (CFRP) offer significant potential in light-weighting applications, specifically in the automotive sector. The demand for medium to high production quantities with consistent material properties has paved the way for the use of high-pressure resin transfer molding (HP-RTM). Due to high experimental cost and number of the operational parameters the development of numerical simulations to predict part quality is growing. Despite this, erroneous assumptions and simplifications limit the application of HP-RTM models, specifically with regards to the energy models used to model the heat transfer occurring during infiltration. The current work investigates the operating parameters at which the thermal non-equilibrium energy model’s increased computational cost and complexity is worth added accuracy. It was found that in nearly all cases, using the thermal non-equilibrium is required to obtain an accurate prediction of the temperature development and resulting final properties within the mold after the infiltration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.