Boss is an autonomous vehicle that uses on-board sensors (global positioning system, lasers, radars, and cameras) to track other vehicles, detect static obstacles, and localize itself relative to a road model. A three-layer planning system combines mission, behavioral, and motion planning to drive in urban environments. The mission planning layer considers which street to take to achieve a mission goal. The behavioral layer determines when to change lanes and precedence at intersections and performs error recovery maneuvers. The motion planning layer selects actions to avoid obstacles while making progress toward local goals. The system was developed from the ground up to address the requirements of the DARPA Urban Challenge using a spiral system development process with a heavy emphasis on regular, regressive system testing. During the National Qualification Event and the 85-km Urban Challenge Final Event, Boss demonstrated some of its capabilities, qualifying first and winning the challenge. C 2008 Wiley Periodicals, Inc.
This work presents a novel approach to efficient multirobot mapping and exploration which exploits a market architecture in order to maximize information gain while minimizing incurred costs. This system is reliable and robust in that it can accommodate dynamic introduction and loss of team members in addition to being able to withstand communication interruptions and failures. Results showing the capabilities of our system on a team of exploring autonomous robots are given.
Task allocation is an important aspect of many multi-robot systems. The features and complexity of multi-robot task allocation (MRTA) problems are dictated by the requirements of the particular domain under consideration. These problems can range from those involving instantaneous distribution of simple, independent tasks among members of a homogenous team, to those requiring the time-extended scheduling of complex interrelated multi-step tasks for members of a heterogenous team related by several constraints. The existing widely used taxonomy for task allocation in multi-robot systems was designed for problems with independent tasks and does not deal with problems with interrelated utilities and constraints. While that taxonomy was a groundbreaking contribution to the MRTA literature, a survey of recent work in MRTA reveals that it is no longer a sufficient taxonomy, due to the increasing importance of interrelated utilities and constraints in realistic MRTA problems under consideration. Thus, in this paper, we present a new, comprehensive taxonomy, iTax, that explicitly takes into consideration the issues of interrelated utilities and constraints. Our taxonomy maps categories of MRTA problems to existing mathematical models from combinatorial optimization and operations research, and hence draws important parallels between robotics and these fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.