The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.
Addition of reversine to dividing cells ejects Mad1 and the RZZ complex from unattached kinetochores and prevents resolution of incorrect chromosome–microtubule attachments (see also related papers by Hewitt et al. and Maciejowski et al. in this issue).
To satisfy the mitotic checkpoint and drive chromosome congression, the Mps1 kinase lets go of kinetochores by phosphorylating itself in trans (see also related papers by Maciejowski et al. and Santaguida et al. in this issue).
Mps1 is an upstream component of the spindle assembly checkpoint, which, in human cells, is required for checkpoint activation in response to spindle damage but not apparently during an unperturbed mitosis. Mps1 also recruits Mad1 and Mad2 to kinetochores. However, whether the enzymatic activity of Mps1 is required for these processes is unclear. To address this question, we established an RNA interference (RNAi) complementation assay. Repression of Mps1 triggers premature anaphase, often with unaligned or maloriented chromosomes. This phenotype is rescued by an RNAi-resistant wild-type Mps1 transgene but not by a catalytically inactive mutant. An analogue-sensitive allele, Mps1M602A, also rescues the RNAi-induced defect, but not when inhibited by the adenosine triphosphate analogue 1-NM-PP1. Thus, Mps1 activity does restrain anaphase during an unperturbed mitosis. Furthermore, although catalytically inactive Mps1 can restore kinetochore localization of Mad1, only the active kinase restores Mad2 localization. Thus, in human cells, Mps1 catalytic activity is required for spindle checkpoint function and recruitment of Mad2.
The majority of human tumour cells are aneuploid owing to an underlying chromosome instability phenotype. While the genetic lesions that cause chromosome instability remain undefined, mouse ES cells harbouring homozygous adenomatous polyposis coli (APC) mutations are frequently tetraploid. In addition, colon cancer cells with APC mutations have weakened kinetochore-microtubule interactions. Furthermore, mitotic spindles assembled in APC-depleted Xenopus egg extracts are aberrant. Therefore, to determine whether APC mutations can initiate chromosome instability in human cells, we expressed N-terminal APC fragments in HCT-116 cells, a near diploid colon cancer cell line with two wild-type APC alleles. We show that cells expressing N-APC mutants exit mitosis prematurely in the presence of spindle toxins, consistent with a spindle checkpoint defect. In addition, N-APC cells show enhanced survival following prolonged spindle damage. In contrast to controls, the N-APC survivors frequently contain dicentric chromosomes and then go on to become highly aneuploid. These observations suggest that truncating APC mutations can exert dominant effects which in turn can initiate chromosome instability. As such, APC mutation not only compromises tumour suppressor function but may also have oncogenic properties. We suggest therefore that the initial APC mutation acts as a `double whammy', destabilising the genome and setting the stage for deregulated proliferation upon loss of the second APC allele.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.