This work explores time-resolved emission imaging microscopy (TREM) for noninvasive imaging and mapping of live cells on a hitherto uncharted microsecond time scale. Simple robust molecules for this purpose have long been sought. We have developed highly emissive, synthetically versatile, and photostable platinum(II) complexes that make TREM a practicable reality. fluorescence microscopy ͉ time-resolved luminescence spectroscopy ͉ transition metal complexes ͉ cyclometalation
We report the first transcutaneous Raman spectrum of human bone in vivo obtained at skin-safe laser illumination levels. The spectrum of thumb distal phalanx was obtained using spatially offset Raman spectroscopy (SORS), which provides chemically specific information on deep layers of human tissue, well beyond the reach of existing comparative approaches. The spectroscopy is based on collecting Raman spectra away from the point of laser illumination using concentric rings of optical fibers. As a generic analytical tool this approach paves the way for a range of uses including disease diagnosis, noninvasive probing of pharmaceutical products, biofilms, catalysts, paints, and in dermatological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.