Research demonstrates that the majority of alarms derived from continuous bedside monitoring devices are non-actionable. This avalanche of unreliable alerts causes clinicians to experience sensory overload when attempting to sort real from false alarms, causing desensitization and alarm fatigue, which in turn leads to adverse events when true instability is neither recognized nor attended to despite the alarm. The scope of the problem of alarm fatigue is broad, and its contributing mechanisms are numerous. Current and future approaches to defining and reacting to actionable and non-actionable alarms are being developed and investigated, but challenges in impacting alarm modalities, sensitivity and specificity, and clinical activity in order to reduce alarm fatigue and adverse events remain. A multi-faceted approach involving clinicians, computer scientists, industry, and regulatory agencies is needed to battle alarm fatigue.
Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
BACKGROUND: Individualized hemodynamic monitoring approaches are not well validated. Thus, we evaluated the discriminative performance improvement that might occur when moving from noninvasive monitoring (NIM) to invasive monitoring and with increasing levels of featurization associated with increasing sampling frequency and referencing to a stable baseline to identify bleeding during surgery in a porcine model. METHODS: We collected physiologic waveform (WF) data (250 Hz) from NIM, central venous (CVC), arterial (ART), and pulmonary arterial (PAC) catheters, plus mixed venous O2 saturation and cardiac output from 38 anesthetized Yorkshire pigs bled at 20 mL/min until a mean arterial pressure of 30 mm Hg following a 30-minute baseline period. Prebleed physiologic data defined a personal stable baseline for each subject independently. Nested models were evaluated using simple hemodynamic metrics (SM) averaged over 20-second windows and sampled every minute, beat to beat (B2B), and WF using Random Forest Classification models to identify bleeding with or without normalization to personal stable baseline, using a leave-one-pig-out cross-validation to minimize model overfitting. Model hyperparameters were tuned to detect stable or bleeding states. Bleeding models were compared use both each subject’s personal baseline and a grouped-average (universal) baseline. Timeliness of bleed onset detection was evaluated by comparing the tradeoff between a low false-positive rate (FPR) and shortest time to bleed detection. Predictive performance was evaluated using a variant of the receiver operating characteristic focusing on minimizing FPR and false-negative rates (FNR) for true-positive and true-negative rates, respectively. RESULTS: In general, referencing models to a personal baseline resulted in better bleed detection performance for all catheters than using universal baselined data. Increasing granularity from SM to B2B and WF progressively improved bleeding detection. All invasive monitoring outperformed NIM for both time to bleeding detection and low FPR and FNR. In that regard, when referenced to personal baseline with SM analysis, PAC and ART + PAC performed best; for B2B CVC, PAC and ART + PAC performed best; and for WF PAC, CVC, ART + CVC, and ART + PAC performed equally well and better than other monitoring approaches. Without personal baseline, NIM performed poorly at all levels, while all catheters performed similarly for SM, with B2B PAC and ART + PAC performing the best, and for WF PAC, ART, ART + CVC, and ART + PAC performed equally well and better than the other monitoring approaches. CONCLUSIONS: Increasing hemodynamic monitoring featurization by increasing sampling frequency and referencing to personal baseline markedly improves the ability of invasive monitoring to detect bleed.
Objectives: We hypothesize that knowledge of a stable personalized baseline state and increased data sampling frequency would markedly improve the ability to detect progressive hypovolemia during hemorrhage earlier and with a lower false positive rate than when using less granular data. Design: Prospective temporal challenge. Setting: Large animal research laboratory, University Medical Center. Subjects: Fifty-one anesthetized Yorkshire pigs. Interventions: Pigs were instrumented with arterial, pulmonary arterial, and central venous catheters and allowed to stabilize for 30 minutes then bled at a constant rate of either 5 mL·min–1 (n = 13) or 20 (n = 38) until mean arterial pressure decreased to 40 or 30 mm Hg in the 5 and 20 mL·min–1 pigs, respectively. Measurements and Main Results: Data during the stabilization period served as baseline. Hemodynamic variables collected at 250 Hz were used to create predictive models of “bleeding” using featurized beat-to-beat and waveform data and compared with models using mean unfeaturized hemodynamic variables averaged over 1-minute as simple hemodynamic metrics using random forest classifiers to identify bleeding with or without baseline data. The robustness of the prediction was evaluated in a leave-one-pig-out cross-validation. Predictive performance of models was compared by their activity monitoring operating characteristic and receiver operating characteristic profiles. Primary hemodynamic threshold data poorly identified bleed onset unless very stable initial baseline reference data were available. When referenced to baseline, bleed detection at a false positive rates of 10–2 with time to detect 80% of pigs bleeding was similar for simple hemodynamic metrics, beat-to-beat, and waveform at about 3–4 minutes. Whereas when universally baselined, increasing sampling frequency reduced latency of bleed detection from 10 to 8 to 6 minutes, for simple hemodynamic metrics, beat-to-beat, and waveform, respectively. Some informative features differed between simple hemodynamic metrics, beat-to-beat, and waveform models. Conclusions: Knowledge of personal stable baseline data allows for early detection of new-onset bleeding, whereas if no personal baseline exists increasing sampling frequency of hemodynamic monitoring data improves bleeding detection earlier and with lower false positive rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.