[1] During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58°between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone-depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900-2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone-depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long-range transport of relatively fresh ''pollution'' within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The measurements were consistent with a source of formaldehyde from the snow/ice surface. Median NO x in the surface layer was 15 pptv or less, suggesting that surface emissions were substantially converted to reservoir constituents by 30 m altitude and that ozone production rates were small (0.15-1.5 ppbv/d) at this altitude. Peroxyacetylnitrate (PAN) was by far the major constituent of NO y in the surface layer independent of the ozone mixing ratio.
The aircraft‐based 2002 Intercontinental Transport and Chemical Transformation experiment intercepted and chemically analyzed pollution plumes transported from Asia to the western United States. The research flight on 10–11 May 2002 detected mixing between polluted and stratospheric air at midtropospheric levels above the California coast. This study uses a Lagrangian domain‐filling trajectory technique to illustrate that this event was the result of mixing between two warm conveyor belts (WCB) containing Asian pollution and the remnants of a deep tropopause fold from a downstream midlatitude cyclone (referred to as the stratospheric component of a dry airstream or SCDA). Advection of the trajectory particles shows how the SCDA decayed over 7.5 days. One component dispersed into a downstream WCB, while another component descended into the lower troposphere and became entrained by an upwind WCB. After 7.5 days of transport 22% of the SCDA mass was transported into the troposphere. The portions of the SCDA that penetrated to the lowest altitudes had the greatest likelihood of being transported into the troposphere. For example, over 90% of the SCDA at altitudes below the 600 hPa level was transported to the troposphere, but none of the mass at the 200 hPa level was exchanged. More than half of the exchange occurred during the first 48 hours as the deepest portions of the tropopause fold decayed over the Pacific. The rest of the exchange occurred over the following 5.5 days as the remnants of the SCDA sheared apart along the edge of the stratospheric polar vortex and became entrained into subsequent tropopause folds and vortex breakaway features. Stratosphere to troposphere exchange resulted in the transport of 0.5 Tg of stratospheric ozone to the troposphere during the 7.5 day study period. Roughly half of the SCDA particles that entered the troposphere dispersed into the upwind and downwind WCBs.
A deep learning convolutional neural network model is used to explore the possibilities of estimating tropical cyclone (TC) intensity from satellite images in the 37- and 85–92-GHz bands. The model, called “DeepMicroNet,” has unique properties such as a probabilistic output, the ability to operate from partial scans, and resiliency to imprecise TC center fixes. The 85–92-GHz band is the more influential data source in the model, with 37 GHz adding a marginal benefit. Training the model on global best track intensities produces model estimates precise enough to replicate known best track intensity biases when compared to aircraft reconnaissance observations. Model root-mean-square error (RMSE) is 14.3 kt (1 kt ≈ 0.5144 m s−1) compared to two years of independent best track records, but this improves to an RMSE of 10.6 kt when compared to the higher-standard aircraft reconnaissance-aided best track dataset, and to 9.6 kt compared to the reconnaissance-aided best track when using the higher-resolution TRMM TMI and Aqua AMSR-E microwave observations only. A shortage of training and independent testing data for category 5 TCs leaves the results at this intensity range inconclusive. Based on this initial study, the application of deep learning to TC intensity analysis holds tremendous promise for further development with more advanced methodologies and expanded training datasets.
Bimodally distributed column water vapor (CWV) indicates a well‐defined moist regime in the Tropics, above a margin value near 48 kg m−2 in current climate (about 80% of column saturation). Maps reveal this margin as a meandering, sinuous synoptic contour bounding broad plateaus of the moist regime. Within these plateaus, convective storms of distinctly smaller convective and mesoscales occur sporadically. Satellite data composites across the poleward most margin reveal its sharpness, despite the crude averaging: precipitation doubles within 100 km, marked by both enhancement and deepening of cloudiness. Transported patches and filaments of the moist regime cause consequential precipitation events within and beyond the Tropics. Distinguishing synoptic flows that cross the margin from flows that move the margin is made possible by a novel satellite‐based Lagrangian CWV tendency estimate. Climate models do not reliably reproduce the observed bimodal distribution, so studying the moist mode's maintenance processes and the margin‐zone air mass transformations, guided by the Lagrangian tendency product, might importantly constrain model moist process treatments.
[1] The Tropospheric Ozone Production about the Spring Equinox (TOPSE) experiment examined the evolution of tropospheric chemical compositions from February to May 2000 over North America, 40 to 85 N. Hydrogen peroxide (H 2 O 2 ) and methyl hydroperoxide (CH 3 OOH) were investigated using instrumental observations aboard the NCAR C-130 research aircraft. Primary TOPSE results indicate both photochemistry and atmospheric dynamics are critical factors controlling the variability of peroxides in this region. From February to May, H 2 O 2 and CH 3 OOH mixing ratios increased with the greatest relative changes at mid-altitudes. H 2 O 2 ranged from below the detection limit (BDL = 25 pptv) to 380 pptv in winter and from BDL to 1330 pptv during spring. Winter measurements of CH 3 OOH were from BDL (35 pptv) to 740 pptv with higher levels of BDL to 1400 pptv measured during spring. Peroxides also decreased with latitude at all altitudes. These findings are consistent with those expected from photochemical theory. Evidence also supports a source of CH 3 OOH to the Arctic from the transport of subtropical air masses. Air mass back trajectories and GOES-derived specific humidity products indicate transport of moist tropical air to the study region coincides with elevated levels of CH 3 OOH up to 940 pptv. The concurrence of this transport regime with episodic elevated CH 3 OOH events suggests a source of HO x to the Arctic. However, evidence from this study shows CH 3 OOH does not greatly contribute to total HO x production which is dominated primarily by reactions of O(
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.