Rhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of “fluorogenic” compounds—ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone–zwitterion equilibrium constant (KL–Z) is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore—Janelia Fluor 526 (JF526)—with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF526 is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF526 constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.
Hydrogen holds promise as a clean alternative automobile fuel, but its on-board storage presents significant challenges due to the low temperatures and/or high pressures required to achieve a sufficient energy density. The opportunity to significantly reduce the required pressure for high density H 2 storage persists for metal-organic frameworks due to their modular structures and large internal surface areas. The measurement of H 2 adsorption in such materials under conditions most relevant to on-board storage is crucial to understanding how these materials would perform in actual applications, although such data have to date been lacking. In the present work, the metalorganic frameworks M 2 (m-dobdc) (M = Co, Ni; m-dobdc 4− = 4,6-dioxido-1,3benzenedicarboxylate) and the isomeric frameworks M 2 (dobdc) (M = Co, Ni; dobdc 4− = 1,4dioxido-1,3-benzenedicarboxylate), which are known to have open metal cation sites that strongly interact with H 2 , were evaluated for their usable volumetric H 2 storage capacities over a range of near-ambient temperatures relevant to on-board storage. Based upon adsorption isotherm data, Ni 2 (m-dobdc) was found to be the top-performing physisorptive storage material with a usable volumetric capacity between 100 and 5 bar of 11.0 g/L at 25 °C and 23.0 g/L with a temperature swing between −75 and 25 °C. Additional neutron diffraction and infrared spectroscopy experiments performed with in situ dosing of D 2 or H 2 were used to probe the hydrogen storage properties of these materials under the relevant conditions. The results provide benchmark characteristics for comparison with future attempts to achieve improved adsorbents for mobile hydrogen storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.