Abstract-We propose a shape-based approach to curve evolution for the segmentation of medical images containing known object types. In particular, motivated by the work of Leventon, Grimson, and Faugeras [15], we derive a parametric model for an implicit representation of the segmenting curve by applying principal component analysis to a collection of signed distance representations of the training data. The parameters of this representation are then manipulated to minimize an objective function for segmentation. The resulting algorithm is able to handle multidimensional data, can deal with topological changes of the curve, is robust to noise and initial contour placements, and is computationally efficient. At the same time, it avoids the need for point correspondences during the training phase of the algorithm. We demonstrate this technique by applying it to two medical applications; two-dimensional segmentation of cardiac magnetic resonance imaging (MRI) and three-dimensional segmentation of prostate MRI.Index Terms-Active contours, binary image alignment, cardiac MRI segmentation, curve evolution, deformable model, distance transforms, eigenshapes, implicit shape representation, medical image segmentation, parametric shape model, principal component analysis, prostate segmentation, shape prior, statistical shape model.
In this work, we first address the problem of simultaneous image segmentation and smoothing by approaching the Mumford-Shah paradigm from a curve evolution perspective. In particular, we let a set of deformable contours define the boundaries between regions in an image where we model the data via piecewise smooth functions and employ a gradient flow to evolve these contours. Each gradient step involves solving an optimal estimation problem for the data within each region, connecting curve evolution and the Mumford-Shah functional with the theory of boundary-value stochastic processes. The resulting active contour model offers a tractable implementation of the original Mumford-Shah model (i.e., without resorting to elliptic approximations which have traditionally been favored for greater ease in implementation) to simultaneously segment and smoothly reconstruct the data within a given image in a coupled manner. Various implementations of this algorithm are introduced to increase its speed of convergence. We also outline a hierarchical implementation of this algorithm to handle important image features such as triple points and other multiple junctions. Next, by generalizing the data fidelity term of the original Mumford-Shah functional to incorporate a spatially varying penalty, we extend our method to problems in which data quality varies across the image and to images in which sets of pixel measurements are missing. This more general model leads us to a novel PDE-based approach for simultaneous image magnification, segmentation, and smoothing, thereby extending the traditional applications of the Mumford-Shah functional which only considers simultaneous segmentation and smoothing.
In this paper, we analyze the geometric active contour models discussed in [6, 181 from a curve evolution point of view and propose some modifications based on gradient flows relative to certain new featurebased Riemannian metrics. This leads to a novel snake paradigm in which the feature of interest may be considered to lie at the bottom of a potential well. Thus the snake is attracted very naturally and eficiently to the desired feature. Moreover, we consider some 3 -0 active surface models based on these ideas.
Abstract-In this note, we employ the new geometric active contour models formulated in [25] and [26] for edge detection and segmentation of magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound medical imagery. Our method is based on defining feature-based metrics on a given image which in turn leads to a novel snake paradigm in which the feature of interest may be considered to lie at the bottom of a potential well. Thus, the snake is attracted very quickly and efficiently to the desired feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.