Alkannin/shikonin and their derivatives are specialised metabolites of high pharmaceutical and ecological importance exclusively produced in the periderm of members of the plant family Boraginaceae. Previous studies have shown that their biosynthesis is induced in response to methyl jasmonate but not salicylic acid, two phytohormones that play important roles in plant defence. However, mechanistic understanding of induction and non-induction remains largely unknown. In the present study, we generated the first comprehensive transcriptomic dataset and metabolite profiles of Lithospermum officinale plants treated with methyl jasmonate and salicylic acid to shed light on the underlying mechanisms. Our results highlight the diverse biological processes activated by both phytohormones and reveal the important regulatory role of the mevalonate pathway in alkannin/shikonin biosynthesis in L. officinale. Furthermore, by modelling a coexpression network, we uncovered structural and novel regulatory candidate genes connected to alkannin/shikonin biosynthesis. Besides providing new mechanistic insights into alkannin/shikonin biosynthesis, the generated methyl jasmonate and salicylic acid elicited expression profiles together with the coexpression networks serve as important functional genomic resources for the scientific community aiming at deepening the understanding of alkannin/shikonin biosynthesis.
Plants are colonized by a wide range of bacteria, several of which are known to confer benefits to their hosts such as enhancing plant growth and the biosynthesis of secondary metabolites (SMs). Recently, it has been shown that Chitinophaga sp. strain R-73072 enhances the production of alkannin/shikonin, SMs of pharmaceutical and ecological importance. However, the mechanisms by which this bacterial strain increases these SMs in plants are not yet understood. To gain insight into these mechanisms, we analyzed the molecular responses of Lithospermum officinale, an alkannin/shikonin producing member of Boraginaceae, to inoculation with R-73072 in a gnotobiotic system using comparative transcriptomics and targeted metabolite profiling of root samples. We found that R-73072 modulated the expression of 1,328 genes, of which the majority appeared to be involved in plant defense and SMs biosynthesis including alkannin/shikonin derivatives. Importantly, bacterial inoculation induced the expression of genes that predominately participate in jasmonate and ethylene biosynthesis and signaling, suggesting an important role of these phytohormones in R-73072-mediated alkannin/shikonin biosynthesis. A detached leaf bioassay further showed that R-73072 confers systemic protection against Botrytis cinerea. Finally, R-73072-mediated coregulation of genes involved in plant defense and the enhanced production of alkannin/shikonin esters further suggest that these SMs could be important components of the plant defense machinery in alkannin/shikonin producing species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.