VEGF induces normal or aberrant angiogenesis depending on its dose in the microenvironment around each producing cell in vivo. This transition depends on the balance between VEGF-induced endothelial stimulation and PDGF-BB-mediated pericyte recruitment, and co-expression of PDGF-BB normalizes aberrant angiogenesis despite high VEGF doses. We recently found that VEGF over-expression induces angiogenesis in skeletal muscle through an initial circumferential vascular enlargement followed by longitudinal splitting, rather than sprouting. Here we investigated the cellular mechanism by which PDGF-BB co-expression normalizes VEGF-induced aberrant angiogenesis. Monoclonal populations of transduced myoblasts, expressing similarly high levels of VEGF alone or with PDGF-BB, were implanted in mouse skeletal muscles. PDGF-BB co-expression did not promote sprouting and angiogenesis that occurred through vascular enlargement and splitting. However, enlargements were significantly smaller in diameter, due to a significant reduction in endothelial proliferation, and retained pericytes, which were otherwise lost with high VEGF alone. A time-course of histological analyses and repetitive intravital imaging showed that PDGF-BB co-expression anticipated the initiation of vascular enlargement and markedly accelerated the splitting process. Interestingly, quantification during in vivo imaging suggested that a global reduction in shear stress favored the initiation of transluminal pillar formation during VEGF-induced splitting angiogenesis. Quantification of target gene expression showed that VEGF-R2 signaling output was significantly reduced by PDGF-BB co-expression compared to VEGF alone. In conclusion, PDGF-BB co-expression prevents VEGF-induced aberrant angiogenesis by modulating VEGF-R2 signaling and endothelial proliferation, thereby limiting the degree of circumferential enlargement and enabling efficient completion of vascular splitting into normal capillary networks despite high VEGF doses.
Calorie lowering slows the aging process and extends life span in diverse species by so far unknown mechanisms. The inverse linear relationship between calorie intake and life span suggests that regulators of energy metabolism are of importance in aging. The present study shows that lifelong caloric restriction in mice induces a metabolic adaptation with reduced lipogenesis and enhanced lipolysis and ketogenesis. This process, that is, the reprogramming of hepatic fat metabolism, is associated with a marked rise of fibroblastic growth factor 21 as a putative starvation master regulator. Due to the life span-extending properties of fibroblastic growth factor 21, the rise in fibroblastic growth factor 21 might contribute to the markedly better health status found in mice upon lifelong caloric restriction feeding. In addition, adropin, known as a peptide that controls lipid homeostasis, is significantly upregulated, underlining the diminution of lipogenesis that was further substantiated by decreased expression of liver-X-receptor α and its target genes sterol regulatory element-binding protein-1c, fatty acid synthase, and member 1 of human transporter subfamily ABCA upon lifelong caloric restriction feeding.
This study found that procalcitonin itself impaired several aspects of endothelial cell function. Procalcitonin-induced loss of endothelial barrier function may contribute to capillary leakage and therapy-refractory hypotension during sepsis. Anti-angiogenic properties of procalcitonin at low concentrations could also identify procalcitonin as a mediator of vascular disease associated with the metabolic syndrome. Future studies are needed to further test procalcitonin as a potential therapeutic target for preserving vascular dysfunction during acute and chronic inflammatory disorders.
Unmethylated CpG oligodeoxynucleotides (ODN) bind to the Toll-like receptor 9, thus stimulating the immune system. To study the effects of systemic pretreatment with CpG ODN on dermal regeneration, C57BL6/J Tyr mice were treated with CpG or control ODN 6 days prior to implantation of a dorsal skinfold chamber and skin wounding. Wound epithelialization was analyzed by planimetric microscopy. On day 18, wound tissues were taken for (immuno)histochemical staining. CpG ODN increased epithelialization compared with control ODN treatment. Histological analysis revealed reduced capillary density, reduced wound cellularity, and reduced numbers of infiltrating leukocytes, as well as reduced F4/80-positive macrophages, but increased numbers of RELM-α-positive M2 macrophages after CpG ODN treatment, reflecting a better quality of wound healing on day 18 compared with control ODN treatment. Reverse transcription-polymerase chain reaction analysis of Toll-like receptor 9 showed the receptor expression on both fibroblasts and keratinocytes. Fibroblasts showed an increase of migration upon increasing dosages of CpG and not control ODN, reaching ∼50% of the response of basic fibroblast growth factor-exposed cells. Keratinocytes dose-dependently responded to both CpG and control ODN up to values found in keratinocyte growth factor-exposed cells. In summary, CpG ODN support late tissue-remodeling processes that contribute to resolution of inflammation and solid wounds during skin regeneration.
Toll-like receptor 2 deficiency is associated with an uncompromised adrenal stress response and increased survival rates during polymicrobial sepsis. Hydrocortisone treatment increases mortality of septic TLR2 mice, suggesting that hydrocortisone therapy might be harmful for individuals with functional TLR2 polymorphisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.