Background: Vitamin C is one of the major extracellular nonenzymatic antioxidants involved in the biosynthesis of collagen. It promotes the growth of fibroblasts, wound healing processes, and enhances the survival and differentiation of osteoblasts. The potential effects of ascorbic acid on human dental pulp cells (DPC) and the cells of the apical papilla (CAP) used in actual regenerative endodontic procedures remain largely unknown. In this study, we investigated the possible employment of ascorbic acid in the differentiation and regenerative therapies of DPC and CAP. Methods: Nine extracted human wisdom teeth were selected for this study. Subpopulations of stem cells within DPC and CAP were sorted with the mesenchymal stem cell marker STRO-1, followed by treatments with different concentrations (0 mM, 0.1 mM, 0.5 mM, and 1.0 mM) of ascorbic acid (AA), RT-PCR, and Western blot analysis. Results: FACS analysis revealed the presence of cell subpopulations characterized by a strong expression of mesenchymal stem cell marker STRO-1 and dental stem cell markers CD105, CD44, CD146, CD90, and CD29. Treatment of the cells with defined amounts of AA revealed a markedly increased expression of proliferation marker Ki-67, especially in the concentration range between 0.1 mM and 0.5 mM. Further investigations demonstrated that treatment with AA led to significantly increased expression of common stem cell markers OCT4, Nanog, and Sox2. The most potent proliferative and expressional effects of AA were observed in the concentration of 0.1 mM. Conclusions: AA might be a novel and potent growth promoter of human dental cells. Increasing the properties of human dental pulp cells and the cells of the apical papilla using AA could be a useful factor for further clinical developments of regenerative endodontic procedures.
The dental pulp is an important soft connective tissue which is able to produce dentin over time as a reaction on external stimuli. It also maintains the biological and physiological vitality of the dentin. Due to this the pulp is essential for teeth homeostasis. However, dental caries is still one of the most prevalent health problems in dentistry and therefore, one major cause for early loss of the dental pulp vitality and subsequent tooth extractions. Meanwhile the potential for successful pulp regeneration therapy is increasing due to advances in the field of regenerative endodontics. Thus, adequate experimental animal models are required for testing and validating these new regenerative therapies. Rodents and rats in particular, are relevant models for experimental periodontal research. The breeding and housing costs of rats are relatively low facilitating studies with sufficient numbers for statistical analysis in comparison to bigger sized mammals like beagle dogs, miniature pigs or monkeys. Additionally, rat molar teeth and pulps are characterized by similar anatomical, histological, biological and physiological features to human teeth. Essential biological reactions of the pulp tissue and the interaction during the different stages of wound healing of rat molar teeth are comparable to that of other mammals. However, despite of the multiple research activities in the field of regenerative endodontics and the above mentioned advantages of the rat model only rare in vivo studies are published. Therefore, the presented study aimed to introduce the rat molar teeth as a valid model for studying dental pulp stem cell based endodontic tissue regeneration. Human dental pulp stem cells were implanted into the pulp of immunodeficient rats (RNU rats). Cell growth was supported by a collagenous membrane, which was applied on top of the cells after implantation. After closing the pulpal cavity with a light-polymerisable resin human dental pulp stem cells were able to maintain cell viability in the rat molar pulp niche for at least three weeks. This demonstrated the suitability of immunodeficient RNU rats for non-autologous dental stem cell based endodontic tissue engineering approaches.
In recent years, sodium hypochlorite and chlorhexidine digluconate have been the gold standard of irrigation solutions utilized within the disinfection protocol during root canal treatments. Nowadays, it is known that, during chemical disinfection of the root canal, consecutive application of sodium hypochlorite and chlorhexidine digluconate leads to the formation of an orange-brown precipitate. This precipitate is described as being chemically similar to para-chloroaniline, which is suspected to have cytotoxic and carcinogenic effects. Concerns also exist regarding its influence on the leakage of root canal fillings, coronal restorations, and tooth discoloration. The purpose of this article is to review the literature on the interaction of sodium hypochlorite and chlorhexidine digluconate on the tooth and its surrounding tissues, and to discuss the effect of the precipitate formed during root canal treatment. We further address options to avoid the formation of the precipitate and describe alternative irrigation solutions that should not interact with sodium hypochlorite or chlorhexidine digluconate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.