The subnuclear distribution of replication complex proteins is being recognized as an important factor for the control of DNA replication. Herpes simplex virus (HSV) single-strand (ss)DNA-binding protein, ICP8 (infected cell protein 8) accumulates in nuclear replication domains. ICP8 also serves as helper function for the replication of adeno-associated virus (AAV). Using quantitative 3D colocalization analysis we show that upon coinfection of AAV and HSV the AAV replication protein Rep and ICP8 co-reside in HSV replication domains. In contrast, Rep expressed by a recombinant HSV, in the absence of AAV DNA, displayed a nuclear distribution pattern distinct from that of ICP8. Colocal ization of Rep and ICP8 was restored by the reintroduction of single-stranded AAV vector genomes. In vitro, ICP8 displayed direct binding to Rep78. Single-stranded recombinant AAV DNA strongly stimulated this interaction, whereas double-stranded DNA was ineffective. Our findings suggest that ICP8 by its strong ssDNA-binding activity exploits the unique single-strandedness of the AAV genome to form a tripartite complex with Rep78 and AAV ssDNA. This novel mechanism for recruiting components of a functional replication complex directs AAV to subnuclear HSV replication compartments where the HSV replication complex can replicate the AAV genome.
The peripheral benzodiazepine receptor (PBR) is overexpressed in a variety of cancers. In Unio Internationale Contra Cancrum (UICC) III colorectal cancers, a high level of PBR overexpression correlates with poor prognosis. However, little is known about the role of PBR in the development and progression of colorectal cancer. This study addresses the up-regulation of PBR during colorectal carcinogenesis and tumor spread. One hundred sixteen consecutive patients undergoing surgery for colorectal cancer with either regional (59 patients) or distant metastases (57 patients) were followed-up for 5 years or until death. Twenty-four of the 59 patients with initial UICC stage III cancers later developed distant metastases. PBR overexpression in tumor specimens was determined by immunohistochemistry. UICC stage III patients with colorectal primaries highly overexpressing PBR developed metastases significantly more often than patients with low PBR overexpression in their primary carcinoma. In 54 of the 116 patients adenomas and/or metastases and/or recurrences were available to be studied for PBR up-regulation during colorectal carcinogenesis and tumor spread. PBR was found to be overexpressed in 86% of early and late adenomas. Furthermore, 85% of primaries and of 86% of metastases displayed PBR overexpression. PBR overexpression was also detected at the mRNA level as revealed by real-time PCR. The extent of PBR protein overexpression was equivalent in colorectal adenomas and carcinomas but slightly increased in metastases. These data suggest a functional role of PBR during colorectal carcinogenesis and tumor spread. Thus, PBR qualifies as a target for innovative diagnostic and therapeutic approaches.
Abnormalities in proliferation and differentiation of the dystrophin-deficient muscle are a controversial aspect of the pathogenesis of Duchenne muscular dystrophy (DMD). Analyses of molecules involved in cell cycle modulation do not exist in this context. Cells withdrawn from the cell cycle permanently express p21. The fact that p2 1, in contrast to other cell cycle proteins, is not diminished when myotubes are reexposed to growth media, allocates this cyclin-dependent kinase inhibitor a special function. Here we report for the first time statistically increased p21 mRNA levels in dystrophin-deficient muscle tissue. Only 42% of conventional RT-PCRs from six muscle samples of human controls yielded positive results but almost all skeletal muscle biopsy samples (87%) from DMD patients (n=5). For p21 mRNA quantification in murine muscle samples we were able to use the exact real-time TaqMan PCR method due to generally higher p21 mRNA levels than in human muscles. In addition, contamination with fibroblasts can be excluded for the murine samples because they do not demonstrate fibrosis at the age of 350 days but start to lose their regenerative capacity. In accord with the results in humans, we observed p21 mRNA levels in mdx mice that were approx. four times as high as those in control mice. Elevated p21 mRNA level may indicate a shift in cell composition towards differentiated p21 expressing cells as a result of an exhausted pool of undifferentiated, non-p21-expressing satellite cells due to previous cycles of de- and regeneration. Alternatively, dystrophin-deficient cells per se may express higher p21 levels for unknown reasons. Although we cannot distinguish between these possibilities, the eventual transfec tion of a patient's own satellite cells with p21 antisense oligonucleotides may enable the dystrophic process to be influenced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.