The surface characteristics of intravenously administered particulate drug carriers decisively influence the protein adsorption that is regarded as a key factor for the in vivo fate of the carriers. Latex nanoparticles were synthesized to study the influence of different basic and acidic functional groups on particulate surfaces on the protein adsorption from human serum. The protein mass adsorbed to the particles was assessed by BCA protein assay, the protein adsorption patterns were analyzed by two-dimensional electrophoresis. Considerable differences in the protein adsorption with regard to preferential adsorbed proteins were detectable for the different functional groups. Possible correlations between the surface characteristics and the protein adsorption are shown and discussed. The knowledge concerning the interactions of proteins and nanoparticles can be used for a rational development of particulate drug carriers and can also be useful for an optimized design of medical devices, e.g., hemodialysis membranes or implants.
The control of cell adhesion is crucial in many procedures in cellular biotechnology. A thermo-responsive poly(N-isopropylacrylamide)-poly(ethylene glycol)-thiol (PNIPAAm-PEG-thiol) copolymer was synthesized for the formation of self-assembled monolayers (SAM) that allow the control of adhesion of cells on gold substrates. The contact angle of water on these layers varies between 65 degrees at a temperature of 45 degrees C and 54 degrees at 25 degrees C. This behaviour is consistent with a transition of the polymer chains from an extended and highly hydrated to a collapsed coil-like state. At 37 degrees C, cultivated fibroblasts adhere and spread normally on this surface and detach by reducing the temperature below the lower critical solution temperature (LCST). Layers can repeatedly be used without loss of their functionality. In order to quantify the capability of the copolymer layer to induce cell detachment, defined shear forces are applied to the cells. For this purpose, the laminar flow in a microfluidic device is used. Our approach provides a strategy for the optimization of layer properties that is based on establishing a correlation between a functional parameter and molecular details of the layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.