Plastoglobules, lipid-protein bodies in the stroma of plant chloroplasts, are enriched in non-polar lipids, in particular prenyl quinols. In the present study we show that, in addition to the thylakoids, plastoglobules also contain a considerable proportion of the plastidial PQ-9 (plastoquinol-9), the redox component of photosystem II, and of the cyclized product of PQ-9, PC-8 (plastochromanol-8), a tocochromanol with a structure similar to gamma-tocopherol and gamma-tocotrienol, but with a C-40 prenyl side chain. PC-8 formation was abolished in the Arabidopsis thaliana tocopherol cyclase mutant vte1, but accumulated in VTE1-overexpressing plants, in agreement with a role of tocopherol cyclase (VTE1) in PC-8 synthesis. VTE1 overexpression resulted in the proliferation of the number of plastoglobules which occurred in the form of clusters in the transgenic lines. Simultaneous overexpression of VTE1 and of the methyltransferase VTE4 resulted in the accumulation of a compound tentatively identified as 5-methyl-PC-8, the methylated form of PC-8. The results of the present study suggest that the existence of a plastoglobular pool of PQ-9, along with the partial conversion of PQ-9 into PC-8, might represent a mechanism for the regulation of the antioxidant content in thylakoids and of the PQ-9 pool that is available for photosynthesis.
Phylloquinone (vitamin K 1 ) is synthesized in cyanobacteria and in chloroplasts of plants, where it serves as electron carrier of photosystem I. The last step of phylloquinone synthesis in cyanobacteria is the methylation of 2-phytyl-1,4-naphthoquinone by the menG gene product. Here, we report that the uncharacterized Arabidopsis gene At1g23360, which shows sequence similarity to menG, functionally complements the Synechocystis menG mutant. An Arabidopsis mutant, AtmenG, carrying a T-DNA insertion in the gene At1g23360 is devoid of phylloquinone, but contains an increased amount of 2-phytyl-1,4-naphthoquinone. Phylloquinone and 2-phytyl-1,4-naphthoquinone in thylakoid membranes of wild type and AtmenG, respectively, predominantly localize to photosystem I, whereas excess amounts of prenyl quinones are stored in plastoglobules. Photosystem I reaction centers are decreased in AtmenG plants under high light, as revealed by immunoblot and spectroscopic measurements. Anthocyanin accumulation and chalcone synthase (CHS1) transcription are affected during high light exposure, indicating that alterations in photosynthesis in AtmenG affect gene expression in the nucleus. Photosystem II quantum yield is decreased under high light. Therefore, the loss of phylloquinone methylation affects photosystem I stability or turnover, and the limitation in functional photosystem I complexes results in overreduction of photosystem II under high light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.