Summary. The Wilms' tumour gene (WT1) has been suggested as a powerful parameter for molecular monitoring of minimal residual disease (MRD) in leukaemias. However, molecular monitoring via WT1 RNA levels is far from being routinely performed, which is possibly owing to the complex and inaccurate quantitative reverse transcription polymerase chain reaction (RT-PCR) procedures. Using a newlydeveloped quantitative real time RT-PCR, we measured WT1 transcripts in peripheral blood leucocytes of patients with acute myeloid (AML), acute lymphoid (ALL) and chronic myeloid leukaemia (CML). While healthy blood donors did not show measurable amounts of WT1 transcripts, WT1 RNA levels were detectable in all types of leukaemia. Furthermore, intraindividual WT1 transcript kinetics were exclusively dependent on disease progression, treatment and subsequent disease outcome. Using this approach, we could distinguish between treatment response and failure within the first days of therapeutic intervention. Moreover, gradually rising WT1 levels over a period of weeks and months paralleled long-term disease progression and appeared to be a prognostic indicator for subsequent clinical relapse. A linear correlation between quantities of WT1 and bcr/abl fusion transcripts could be seen in CML. We conclude that quantitative assessment of WT1 transcripts using real-time PCR is an appropriate method for molecular monitoring of AML, ALL and CML, and can be used independently for both short-and long-term monitoring of leukaemia patients.
One novel strategy for the blockade of the androgen receptor could be the selective inhibition of androgen receptor by antisense oligonucleotides or small interfering RNA molecules. Here we describe the down regulation of the androgen receptor in cultured human SZ95 sebocytes with antisense oligonucleotides modified with phosphorothioates and 2'- O-methylribosyl residues. The ability of antisense oligonucleotides to cross the cellular membrane was enhanced by establishing a transient transfection system based on cationic lipid vesicles. Both antisense oligonucleotide types administered caused assumedly translational arrest. Dose-dependent inhibition of androgen receptor protein expression was observed after SZ95 sebocyte transfection with modified phosphorothioate oligonucleotides and modified 2'- O-methylribonucleotides which were directed against the translational start of the androgen receptor mRNA. The strongest transient inhibition of androgen receptor expression was detected after 14 hours with 1.0 muM antisense 2'- O-methylribonucleotides (88+/-1.3%, p<0.001). With longer recovery times than 24 hours, androgen receptor protein expression returned to the native control levels. Inhibition of the expression of androgen receptor by antisense oligonucleotides, reduced the enhanced proliferation of SZ95 sebocytes challenged by testosterone and 5alpha-dihydrotestosterone. This administration opens new therapeutic possibilities in androgen-associated skin diseases, since we could also show androgen inhibition with these antisense oligonucleotides in a reconstituted human epidermis model (Horm Metab Res 2007; 39:157-165).
Systemic treatment with antisense oligonucleotides is confounded by the dual problems of potential cytotoxicity of antisense oligonucleotides and carrier molecules such as cationic lipids. Treatment of pathologic conditions affecting the skin may avoid these problems to a large degree due to local application. The success of antisense strategies has been limited by the poor uptake of the transfection reagent and inadequate intracellular compartmentalization. Human skin epithelial cells, therefore, are attractive experimental tools for testing both in vitro and in vivo antisense therapies. In the present study, we determined commercially available liposomes which reproducibly induced a nontoxic increase of oligonucleotide uptake in cultured SZ95 sebocytes and keratinocytes. The final protocol for SZ95 sebocytes was a 4-hour incubation with DOTAP in a 2:1 (w/w) lipid/oligonucleotide ratio in serum-free medium. The fluorescein-labeled (ATCG)5 random oligonucleotide molecules were detected within the nucleus. The optimum transfection system for primary keratinocytes was poly-L-ornithine (12 µg/ml) in a medium without bovine pituitary extract over 4 hours. The uptake of the oligonucleotide increased in the presence of the polycation and oligonucleotide molecules were localized in the cytoplasm of keratinocytes. Oligonucleotide transfection with the help of cationic lipids did not affect the expression of androgen receptor and of the house-keeping gene β-actin. Thus, cationic lipids are useful for delivery of antisense oligonucleotides into skin cells in vitro and may be used for topical application on animal and human skin.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.