In this report, the preparation of Fe-carbon nitride (CN)-based electrocatalysts (ECs) with a “core-shell” morphology for the oxygen reduction reaction (ORR) is described. The ECs consist of spherical XC-72R carbon nanoparticles, the “cores”, that are covered by a CN matrix, the “shell”, that embeds Fe species in “coordination nests”. The latter consist of hollow cavities in the CN matrix, whose internal surface is covered by N- and C-ligands able to stabilize alloy nanoparticles or active sites. Two families of CN-based ECs are prepared, which are grouped on the basis of the concentration of N atoms in the CN “shell”. Each group comprises of both a “pristine” and an “activated” EC; the latter is obtained from the “pristine” EC by a suitable series of treatments (A) devised to improve the ORR performance. The chemical composition of the CN-based ECs is determined by Inductively-Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and microanalysis. The thermal stability under both inert and oxidizing atmospheres is gauged by High-Resolution Thermogravimetric Analysis (HR-TGA). The structure is probed by powder X-ray diffraction, and the morphology is inspected by Scanning Electron Microscopy (SEM) and High-Resolution Transmission Electron Microscopy (HR-TEM). The surface area of the CN-based ECs is determined by nitrogen physisorption techniques, and the surface composition is probed by X-ray Photoelectron Spectroscopy (XPS). The electrochemical performance and reaction mechanism of the CN-based ECs in the ORR is investigated in both acid and alkaline environments by cyclic voltammetry with the Thin-Film Rotating Ring-Disk Electrode setup (CV-TF-RRDE). The influence of the preparation parameters and of the treatments on the physicochemical properties, the ORR performance, and reaction mechanism is studied in detail. In the alkaline environment the FeFe2-CNl900/CA“core-shell” EC shows a remarkable ORR onset potential of 0.908 V vs. RHE which, with respect to the value of 0.946 V vs. RHE of the Pt/C ref., classifies the proposed materials as very promising “Platinum Group Metal-free” ECs for the ORR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.