Purpose. The aim of this study was to investigate the influence of chemical and physical properties of two graft materials on the rate of resorption. Materials and Methods. Direct sinus graft procedure was performed on 22 patients intended for implant placement. Two types of graft materials were used (Bio-Oss and Cerabone) and after 8 months healing time the implants were inserted. Radiographic assessment was performed over the period of four years. Particle size, rate of calcium release, and size and type of crystal structure of each graft were evaluated. Results. The average particle size of Bio-Oss (1 mm) was much smaller compared to Cerabone (2.7 mm). The amount of calcium release due to dissolution of material in water was much higher for Bio-oss compared to Cerabone. X-ray image analysis revealed that Bio-Oss demonstrated significantly higher volumetric loss (33.4 ± 3.1%) of initial graft size compared to Cerabone (23.4 ± 3.6%). The greatest amount of vertical loss of graft material volume was observed after one year of surgery. Conclusion. The chemical and physical properties of bone graft material significantly influence resorption rate of bone graft materials used for sinus augmentation.
ObjectivesThe objective of this study was to investigate the presence of oral lesions in human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients in a descriptive cross-sectional study, and to establish their presence according to levels of CD4+ cells (including the CD4+/CD8+ cell ratio).Materials and MethodsA total of 75 patients infected with HIV were included. Oral lesions were observed and classified using World Health Organization classification guidelines. Potential correlations between the presence and severity of oral lesions and CD4+ cells, including the CD4+/CD8+ cell ratio, were studied.ResultsThe most frequent oral lesion detected was oral pseudomembranous candidiasis (80.0%), followed by periodontal disease (40.0%), herpetic lesions (16.0%), hairy leukoplakia (16.0%), gingivitis (20.0%), oral ulceration (12.0%), Kaposi's sarcoma (8.0%), and non-Hodgkin's lymphoma (4.0%). The CD4+ count was <200 cells/mm3 in 45 cases (60.0%), between 200–500 cells/mm3 in 18 cases (24.0%), and >500 cells/mm3 in 12 cases (16.0%). The mean CD4+ count was 182.18 cells/mm3. The mean ratio of CD4+/CD8+ cells was 0.26. All patients showed at least one oral manifestation.ConclusionThere was no correlation between the CD4+/CD8+ cell ratio and the presence of oral lesions. The severity of the lesions was more pronounced when the CD4+ cell count was less than 200 cells/mm3.
Bone substitutes used in oral surgery include allografts, xenografts, and synthetic materials that are frequently used to compensate bone loss or to reinforce repaired bone, but little is currently known about their physicochemical characteristics. The aim of this study was to evaluate a number of physical and chemical properties in a variety of granulated mineral-based biomaterials used in dentistry and to compare them with those of autogenous bone. Autogenous bone and eight commercial biomaterials of human, bovine, and synthetic origins were studied by high-resolution X-ray diffraction, atomic absorption spectrometry, and laser diffraction to determine their chemical composition, calcium release concentration, crystallinity, and granulation size. The highest calcium release concentration was 24. 94 mg/g for Puros and the lowest one was 2.83 mg/g for Ingenios β-TCP compared to 20.15 mg/g for natural bone. The range of particles sizes, in terms of median size D50, varied between 1.32 μm for BioOss and 902.41 μm for OsteoSponge, compared to 282.1 μm for natural bone. All samples displayed a similar hexagonal shape as bone, except Ingenios β-TCP, Macrobone, and OsteoSponge, which showed rhomboid and triclinic shapes, respectively. Commercial bone substitutes significantly differ in terms of calcium concentration, particle size, and crystallinity, which may affect their in vivo performance.
hMSSM contains potentially multipotent postnatal stem cells providing a promising clinical application in preimplant and implant therapy.
Purpose: The aim of present investigation was to evaluate marginal bone level after 5-year follow-up of implants placed in healed ridges and fresh extraction sockets in maxilla with immediate loading protocol.Materials and Methods: Thirty-six patients in need of a single-tooth replacement in the anterior maxilla received 42 Astra Tech implants (Astra Tech Implant system™, Dentsply Implants, Mölndal, Sweden). Implants were placed either in healed ridges (group I) or immediately into fresh extraction sockets (group II). Implants were restored and placed into functional loading immediately by using a prefabricated abutment. Marginal bone level relative to the implant reference point was recorded at implant placement, crown cementation, 12, 36, and 60 months following loading using intra-oral radiographs. Measurements were made on the mesial and distal sides of each implant.Results: Overall, two implants were lost from the group II, before final crown cementation: they were excluded from the study. The mean change in marginal bone loss (MBL) after implant placement was 0.26 ± 0.161 mm for 1 year, and 0.26 ± 0.171 mm for 3 years, and 0.21 ± 0.185 mm for 5 years in extraction sockets and was 0.26 ± 0.176 mm for 1 year and 0.21 ± 0.175 mm for 3 years, and 0.19 ± 0.172 mm for 5 years in healed ridges group. Significant reduction of marginal bone was more pronounced in implants inserted in healed ridges (P < 0.041) compared to fresh surgical extraction sockets (P < 0.540). Significant MBL was observed on the mesial side of the implant after cementation of the provisional (P < 0.007) and after 12 months (P < 0.034) compared to the distal side which remained stable for 3 and 5 years observation period.Conclusions: Within the limitations of this study, responses of local bone to immediately loaded implants placed either in extraction sockets or healed ridges were similar. Functional loading technique by using prefabricated abutment placed during the surgery time seems to maintain marginal bone around implant in both healed and fresh extraction sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.