Signaling by fibroblast growth factor (FGF) 18 and FGF receptor 3 (FGFR3) have been shown to regulate proliferation, differentiation, and matrix production of articular and growth plate chondrocytes in vivo and in vitro. Notably, the congenital absence of either FGF18 or FGFR3 resulted in similar expansion of the growth plates of fetal mice and the addition of FGF18 to human articular chondrocytes in culture enhanced proliferation and matrix production. Based on these and other experiments it has been proposed that FGF18 signals through FGFR3 to promote cartilage production by chondrocytes. Its role in chondrogenesis remains to be defined. In the current work we used the limb buds of FGFR3 ؉/؉ and FGFR3 ؊/؊ embryonic mice as a source of mesenchymal cells to determine how FGF18 signaling affects chondrogenesis.
Confocal laser-scanning microscopy demonstrated impaired cartilage nodule formation in the FGFR3؊/؊ cultures. Potential contributing factors to the phenotype were identified as impaired mitogenic response to FGF18, decreased production of type II collagen and proteoglycan in response to FGF18 stimulation, impaired interactions with the extracellular matrix resulting from altered integrin receptor expression, and altered expression of FGFR1 and FGFR2. The data identified FGF18 as a selective ligand for FGFR3 in limb bud mesenchymal cells, which suppressed proliferation and promoted their differentiation and production of cartilage matrix. This work, thus, identifies FGF18 and FGFR3 as potential molecular targets for intervention in tissue engineering aimed at cartilage repair and regeneration of damaged cartilage.
We have shown earlier that extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), two key mediators of growth-promoting and proliferative responses, are activated by hydrogen peroxide (H(2)O(2)) in A10 vascular smooth muscle cells (VSMC). In the present studies, using a series of pharmacological inhibitors, we explored the upstream mechanisms responsible for their activation in response to H(2)O(2). H(2)O(2) treatment of VSMC stimulated ERK1/2, p38 mitogen-activated protein kinase (MAPK), and PKB phosphorylation in a dose- and time-dependent fashion. BAPTA-AM and EGTA, chelators of intracellular and extracellular Ca(2+), respectively, inhibited H(2)O(2)-stimulated ERK1/2, p38 MAPK, and PKB phosphorylation. Fluphenazine, an antagonist of the Ca(2+)-binding protein calmodulin, also suppressed the enhanced phosphorylation of ERK1/2, p38 MAPK, and PKB. In contrast, the protein kinase C (PKC) inhibitors Gö 6983 and Rö 31-8220 attenuated H(2)O(2)-induced ERK1/2 phosphorylation, but had no effect on p38 MAPK and PKB phosphorylation. Taken together, these data demonstrate that the activation of Ca(2+)/calmodulin-dependent pathways represents a key component mediating the stimulatory action of H(2)O(2) on ERK1/2, p38 MAPK, and PKB phosphorylation. On the other hand, PKC appears to be an upstream modulator of the increased ERK1/2 phosphorylation, but not of p38 MAPK and PKB in response to H(2)O(2) in VSMC.
Alpha-amanitin is an exceedingly toxic, naturally occurring, bicyclic octapeptide that inhibits RNA polymerase and results in cellular and organismal death. Here we report the straightforward synthesis of an amanitin analogue that exhibited near-native toxicity. A pendant alkyne was readily installed to enable copper-catalyzed alkyne-azide cycloaddition (CuAAC) to azido-rhodamine and two azide-bearing versions of the RGD peptide. The fluorescent toxin analogue entered cells and provoked morphological changes consistent with cell death. The latter two conjugates are as toxic as the parent alkyne precursor, which demonstrates that conjugation does not diminish toxicity. In addition, we showed that toxicity depends on a single diastereomer of the unnatural amino acid, dihydroxyisoleucine (DHIle), at position 3. The convenient synthesis of a heptapeptide precursor now provides access to bioactive amanitin analogues that may be readily conjugated to biomolecules of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.