Glioblastoma (GBM) is a high-grade glioma with a complex microenvironment, including various inflammatory cells and mast cells (MCs) as one of them. Previously we had identified glioma grade-dependent MC recruitment. In the present study we investigated the role of plasminogen activator inhibitor 1 (PAI-1) in MC recruitment.PAI-1, a primary regulator in the fibrinolytic cascade is capable of forming a complex with fibrinolytic system proteins together with low-density lipoprotein receptor-related protein 1 (LRP1). We found that neutralizing PAI-1 attenuated infiltration of MCs. To address the potential implication of LRP1 in this process, we used a LRP1 antagonist, receptor-associated protein (RAP), and demonstrated the attenuation of MC migration. Moreover, a positive correlation between the number of MCs and the level of PAI-1 in a large cohort of human glioma samples was observed. Our study demonstrated the expression of LRP1 in human MC line LAD2 and in MCs in human high-grade glioma. The activation of potential PAI-1/LRP1 axis with purified PAI-1 promoted increased phosphorylation of STAT3 and subsequently exocytosis in MCs.These findings indicate the influence of the PAI-1/LRP1 axis on the recruitment of MCs in glioma. The connection between high-grade glioma and MC infiltration could contribute to patient tailored therapy and improve patient stratification in future therapeutic trials.
A central hypothesis for brain evolution is that it might occur via expansion of progenitor cells and subsequent lineage‐dependent formation of neural circuits. Here, we report in vivo amplification and functional integration of lineage‐specific circuitry in Drosophila. Levels of the cell fate determinant Prospero were attenuated in specific brain lineages within a range that expanded not only progenitors but also neuronal progeny, without tumor formation. Resulting supernumerary neural stem cells underwent normal functional transitions, progressed through the temporal patterning cascade, and generated progeny with molecular signatures matching source lineages. Fully differentiated supernumerary gamma‐amino butyric acid (GABA)‐ergic interneurons formed functional connections in the central complex of the adult brain, as revealed by in vivo calcium imaging and open‐field behavioral analysis. Our results show that quantitative control of a single transcription factor is sufficient to tune neuron numbers and clonal circuitry, and provide molecular insight into a likely mechanism of brain evolution.
Quiescence is a cellular state characterised by reversible cell-cycle arrest and diminished biosynthetic activity that protects against environmental insults, replicative exhaustion and proliferation-induced mutations1. Entry into and exit from this state controls development, maintenance and repair of tissues plus, in the adult central nervous system, generation of new neurons and thus cognition and mood2-4. Cancer stem cells too can undergo quiescence, which confers them resistance to current therapies5,6. Despite clinical relevance, quiescence is poorly understood and is defined functionally given lack of molecular markers. Decrease of the most resource-intensive cellular process of protein synthesis is a feature of quiescence, controlled across species and cell types by inhibition of the Target of Rapamycin pathway1,7. Here, we combine Drosophila genetics and a mammalian model to show that altered nucleocytoplasmic partitioning and nuclear accumulation of polyadenylated RNAs are novel evolutionarily conserved hallmarks of quiescence regulation. These mechanisms provide a previously unappreciated regulatory layer to reducing protein synthesis in quiescent cells, whilst priming them for reactivation in response to appropriate cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.