We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be asymptotically valid. These conditions put limits on the rates at which the cluster sizes can increase as the number of clusters tends to infinity. To include power in the analysis, we allow the data to be generated under sequences of local alternatives. Under a somewhat stronger set of conditions, we also derive formal Edgeworth expansions for the asymptotic and bootstrap test statistics. Simulation experiments illustrate the theoretical results, and the Edgeworth expansions explain the overrejection of the asymptotic test and shed light on the choice of auxiliary distribution for the wild bootstrap.
CIRANO Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d'une subvention d'infrastructure du ministère de l'Économie, de l'Innovation et des Exportations, de même que des subventions et mandats obtenus par ses équipes de recherche. CIRANO is a private non-profit organization incorporated under the Quebec Companies Act. Its infrastructure and research activities are funded through fees paid by member organizations, an infrastructure grant from the ministère de l'Économie, de l'Innovation et des Exportations, and grants and research mandates obtained by its research teams.
This article considers bootstrap inference in a factor‐augmented regression context where the errors could potentially be serially correlated. This generalizes results in Gonçalves & Perron (2014) and makes the bootstrap applicable to forecasting contexts where the forecast horizon is greater than one. We propose and justify two residual‐based approaches, a block wild bootstrap and a dependent wild bootstrap. Our simulations document improvement in coverage rates of confidence intervals for the coefficients when using block wild bootstrap or dependent wild bootstrap relative to both asymptotic theory and the wild bootstrap when serial correlation is present in the regression errors.
Although globalization has shaped the world economy in recent decades, emerging economies have experienced impressive growth compared to developed economies, suggesting specific comovements within developed and emerging business cycles. Using observed developed and emerging real economy activity variables, we investigate whether the latter assertion can be supported by observed data. Based on a two-level factor model, we assume these activity variables can be decomposed into global components, emerging or developed common components, and idiosyncratic national shocks. We propose a statistical test for the null hypothesis of a one-level specification, where it is irrelevant to distinguish between emerging and developed latent factors against the two-level alternative. This paper provides a theoretical justification and Monte Carlo simulations that document the testing procedure. An application of the test to various data sets of developed and emerging countries leads to strong statistical evidence of specific comovements within these two groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.