The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely.
The desert locust (Schistocerca gregaria) has been feared agricultural pest since early civilization, with plagues documented in ancient texts. Population genetic studies of the desert locust are needed to determine genetic variation and movement pattern for efficient control of the pest. In this study, we complemented the limited available microsatellite collection for the desert locust with 34 new polymorphic and multiplexed microsatellite loci. To this aim, we screened an expressed sequence tags library and constructed a partial genomic library enriched for dinucleotide repeats to develop high-throughput and high-quality genotyping assays. We then paid particular attention to quality control and carefully validated 26 of these novel microsatellites and six previously described loci for the absence of null alleles in Western African field populations. This large panel of high-quality microsatellite markers provides new opportunity to infer dispersal rates between populations of the desert locust and help prioritize early monitoring and control. Furthermore, high potential for cross-taxa utility of markers was observed within Schistocerca genus, which includes other locust pest species, with reliable amplification achieved for at least ten of loci per species. Microsatellite markers developed from transcriptome resources were largely devoid of null alleles and were conserved across species compared with those derived from traditional genomic libraries. Accordingly, the number of highly reliable microsatellite markers was greatly improved compared with that of previous studies on Orthopteran species, and this strategy might be broadly applied in other insect species prone to null alleles. (Résumé d'auteur
We evaluated the validity of the subspecific designation for Schistocerca gregaria gregaria (Forskål) and Schistocerca gregaria flaviventris (Burmeister), isolated in distinct regions along the north-south axis of Africa. Towards this goal, we assessed the variation of multiple morphological and molecular traits within species. We first used elliptic Fourier and landmark-based relative warps analyses to compare the size and shape of two internal and two external structures of male genitalia. We provide a discriminant function which classified the specimens with 100% accuracy and selected shape elements of the external structures only (cercus and epiproct). We also tested eight molecular markers, and because of either absence of variation or contamination by mitochondrial DNA (mtDNA)-like sequences, we used a clone-and-sequence analysis of the standard cytochrome c oxidase subunit I mitochondrial DNA barcode only. We differentiated 185 true mitochondrial sequences from 66 mitochondrial DNA-like sequences, most of which were from S. g. gregaria specimens. On the dataset of mitochondrial origin, we identified three characteristic point mutations that diagnosed the two allopatric subspecies with 94% accuracy. Minimum spanning network and parsimony tree analyses identified S. g. flaviventris as a monophyletic lineage distinct from the nominate subspecies. Accordingly, microsatellite data indicate rarely occurring admixture events only, showing that independent evolutionary history is the norm.
West Nile virus (WNV) has a history of irregular but recurrent epizootics in countries of Mediterranean and of Central and Eastern Europe. We have investigated the temporal enzootic activity of WNV in free-ranging birds over a 3-year period in an area with sporadic occurrences of WNV outbreaks in Southern France. We conducted an intensive serologic survey on several wild bird populations (>4000 serum samples collected from 3300 birds) selected as potential indicators of the WNV circulation. WNV antibodies were detected by seroneutralization and/or plaque reduction neutralization in house sparrows, black-billed magpies, and scops owls, but these species appeared to be insufficient indicators of WNV circulation. Overall seroprevalence was low (<1%), including in birds that had been potentially exposed to the virus during recent outbreaks. However, the detection of a seroconversion in one bird, as well as the detection of seropositive birds in all years of our monitoring, including juveniles, indicate a constant annual circulation of WNV at a low level, including in years without any detectable emergence of WN fever in horses or humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.