We propose the study of Markov chains on groups as a "quasi-isometry invariant" theory that encompasses random walks. In particular, we focus on certain classes of groups acting on hyperbolic spaces including (non-elementary) hyperbolic and relatively hyperbolic groups, acylindrically hyperbolic 3-manifold groups, as well as fundamental groups of certain graphs of groups with edge groups of subexponential growth. For those, we prove a linear progress result and various applications, and these lead to a Central Limit Theorem for random walks on groups quasi-isometric to the ones we consider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.