<div> <div> <div> <p>We propose a neuromimetic architecture able to perform always-on pattern recognition. To achieve this, we extended an existing event-based algorithm [1], which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS). Built from asynchronous events acquired by a neuromorphic camera, these time surfaces allow to code the local dynamics of a visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we extended this method to increase its performance. Our first contribution was to add a homeostatic gain control on the activity of neurons to improve the learning of spatio-temporal patterns [2]. A second contribution is to draw an analogy between the HOTS algorithm and Spiking Neural Networks (SNN). Following that analogy, our last contribution is to modify the classification layer and remodel the offline pattern categorization method previously used into an online and event-driven one. This classifier uses the spiking output of the network to define novel time surfaces and we then perform online classification with a neuromimetic implementation of a multinomial logistic regression. Not only do these improvements increase consistently the performances of the network, they also make this event-driven pattern recognition algorithm online and bio-realistic. Results were validated on different datasets: DVS barrel [3], Poker-DVS [4] and N-MNIST [5]. We foresee to develop the SNN version of the method and to extend this fully event-driven approach to more naturalistic tasks, notably for always-on, ultra-fast object categorization. </p> </div> </div> </div>
The statistics of real world images have been extensively investigated, but in virtually all cases using only low dynamic range image databases. The few studies that have considered high dynamic range (HDR) images have performed statistical analyses categorizing images as HDR according to their creation technique, and not to the actual dynamic range of the underlying scene. In this study we demonstrate, using a recent HDR dataset of natural images, that the statistics of the image as received at the camera sensor change dramatically with dynamic range, with particularly strong correlations with dynamic range being observed for the median, standard deviation, skewness, and kurtosis, while the one over frequency relationship for the power spectrum breaks down for images with a very high dynamic range, in practice making HDR images not scale invariant. Effects are also noted in the derivative statistics, the single pixel histograms, and the Haar wavelet analysis. However, we also show that after some basic early transforms occurring within the eye (light scatter, nonlinear photoreceptor response, center-surround modulation) the statistics of the resulting images become virtually independent from the dynamic range, which would allow them to be processed more efficiently by the human visual system.
The response of a biological neuron depends on the precise timing of afferent spikes. This temporal aspect of the neuronal code is essential in understanding information processing in neurobiology and applies particularly well to the output of neuromorphic hardware such as event-based cameras. However, most artificial neuronal models do not take advantage of this minute temporal dimension and here, we develop a model for the efficient detection of temporal spiking motifs based on a layer of neurons with hetero-synaptic delays. Indeed, the variety of synaptic delays on the dendritic tree allows to synchronize synaptic inputs as they reach the basal dendritic tree. We show this can be formalized as a time-invariant logistic regression which can be trained using labelled data. We apply this model to solve the specific computer vision problem of motion detection, and demonstrate its application to synthetic naturalistic videos transformed into event streams similar to the output of event-based cameras. In particular, we quantify how its accuracy can vary with the total computational load. This end-to-end event-driven computational brick could help improve the performance of future Spiking Neural Network (SNN) algorithms and their prospective use in neuromorphic chips.
The procedure was optimized for simplicity of use in genotyping platform and would allow not only to supply antigen-matched products to recipients but also to find rare phenotypes. This methodology could also be useful for establishing a donor repository for human platelet antigens (HPA)-matched platelets since the same issues are involved for patients with neonatal alloimmune thrombocytopenia or post-transfusion purpura.
<div> <div> <div> <p>We propose a neuromimetic architecture able to perform always-on pattern recognition. To achieve this, we extended an existing event-based algorithm [1], which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS). Built from asynchronous events acquired by a neuromorphic camera, these time surfaces allow to code the local dynamics of a visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we extended this method to increase its performance. Our first contribution was to add a homeostatic gain control on the activity of neurons to improve the learning of spatio-temporal patterns [2]. A second contribution is to draw an analogy between the HOTS algorithm and Spiking Neural Networks (SNN). Following that analogy, our last contribution is to modify the classification layer and remodel the offline pattern categorization method previously used into an online and event-driven one. This classifier uses the spiking output of the network to define novel time surfaces and we then perform online classification with a neuromimetic implementation of a multinomial logistic regression. Not only do these improvements increase consistently the performances of the network, they also make this event-driven pattern recognition algorithm online and bio-realistic. Results were validated on different datasets: DVS barrel [3], Poker-DVS [4] and N-MNIST [5]. We foresee to develop the SNN version of the method and to extend this fully event-driven approach to more naturalistic tasks, notably for always-on, ultra-fast object categorization. </p> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.