Study Objectives The development of ambulatory technologies capable of monitoring brain activity during sleep longitudinally is critical for advancing sleep science. The aim of this study was to assess the signal acquisition and the performance of the automatic sleep staging algorithms of a reduced-montage dry-electroencephalographic (EEG) device (Dreem headband, DH) compared to the gold-standard polysomnography (PSG) scored by five sleep experts. Methods A total of 25 subjects who completed an overnight sleep study at a sleep center while wearing both a PSG and the DH simultaneously have been included in the analysis. We assessed (1) similarity of measured EEG brain waves between the DH and the PSG; (2) the heart rate, breathing frequency, and respiration rate variability (RRV) agreement between the DH and the PSG; and (3) the performance of the DH’s automatic sleep staging according to American Academy of Sleep Medicine guidelines versus PSG sleep experts manual scoring. Results The mean percentage error between the EEG signals acquired by the DH and those from the PSG for the monitoring of α was 15 ± 3.5%, 16 ± 4.3% for β, 16 ± 6.1% for λ, and 10 ± 1.4% for θ frequencies during sleep. The mean absolute error for heart rate, breathing frequency, and RRV was 1.2 ± 0.5 bpm, 0.3 ± 0.2 cpm, and 3.2 ± 0.6%, respectively. Automatic sleep staging reached an overall accuracy of 83.5 ± 6.4% (F1 score: 83.8 ± 6.3) for the DH to be compared with an average of 86.4 ± 8.0% (F1 score: 86.3 ± 7.4) for the 5 sleep experts. Conclusions These results demonstrate the capacity of the DH to both monitor sleep-related physiological signals and process them accurately into sleep stages. This device paves the way for, large-scale, longitudinal sleep studies. Clinical Trial Registration NCT03725943.
Sleep stage classification constitutes an important element of sleep disorder diagnosis. It relies on the visual inspection of polysomnography records by trained sleep technologists. Automated approaches have been designed to alleviate this resource-intensive task. However, such approaches are usually compared to a single human scorer annotation despite an inter-rater agreement of about 85% only. The present study introduces two publiclyavailable datasets, DOD-H including 25 healthy volunteers and DOD-O including 55 patients suffering from obstructive sleep apnea (OSA). Both datasets have been scored by 5 sleep technologists from different sleep centers. We developed a framework to compare automated approaches to a consensus of multiple human scorers. Using this framework, we benchmarked and compared the main literature approaches to a new deep learning method, SimpleSleep-Net, which reach state-of-the-art performances while being more lightweight. We demonstrated that many methods can reach human-level performance on both datasets. SimpleSleepNet achieved an F1 of 89.9% vs 86.8% on average for human scorers on DOD-H, and an F1 of 88.3% vs 84.8% on DOD-O. Our study highlights that state-of-the-art automated sleep staging outperforms human scorers performance for healthy volunteers and patients suffering from OSA. Considerations could be made to use automated approaches in the clinical setting.
Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population.
Despite the central role of sleep in our lives and the high prevalence of sleep disorders, sleep is still poorly understood. The development of ambulatory technologies capable of monitoring brain activity during sleep longitudinally is critical to advancing sleep science and facilitating the diagnosis of sleep disorders. We introduced the Dreem headband (DH) as an affordable, comfortable, and user-friendly alternative to polysomnography (PSG). The purpose of this study was to assess the signal acquisition of the DH and the performance of its embedded automatic sleep staging algorithms compared to the gold-standard clinical PSG scored by 5 sleep experts. Thirty-one subjects completed an over-night sleep study at a sleep center while wearing both a PSG and the DH simultaneously. We assessed 1) the EEG signal quality between the DH and the PSG, 2) the heart rate, breathing frequency, and respiration rate variability (RRV) agreement between the DH and the PSG, and 3) the performance of the DH's automatic sleep staging according to AASM guidelines vs. PSG sleep experts manual scoring. Results demonstrate a strong correlation between the EEG signals acquired by the DH and those from the PSG, and the signals acquired by the DH enable monitoring of alpha (r= 0.71 ± 0.13), beta (r= 0.71 ± 0.18), delta (r = 0.76 ± 0.14), and theta (r = 0.61 ± 0.12) frequencies during sleep. The mean absolute error for heart rate, breathing frequency and RRV was 1.2 ± 0.5 bpm, 0.3 ± 0.2 cpm and 3.2 ± 0.6 %, respectively. Automatic Sleep Staging reached an overall accuracy of 83.5 ± 6.4% (F1 score : 83.8 ± 6.3) for the DH to be compared with an average of 86.4 ± 8.0% (F1 score: 86.3 ± 7.4) for the five sleep experts. These results demonstrate the capacity of the DH to both precisely monitor sleep-related physiological signals and process them accurately into sleep stages. This device paves the way for high-quality, large-scale, longitudinal sleep studies. Sleep | EEG | Machine learning | Sleep stages | DeviceCorrespondence: research@dreem.com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.